

Measurement uncertainty for FMH, antibody titration and antibody quantification Mark Nightingale

Caring Expert Quality

MU and confidence in results

Confidence

- will the correct result be reported?
- identify risks potentially affecting
 - -accuracy, reproducibility
- mitigate / control risks
- Uncertainty and ISO15189 (5.5.1.4)
 - what is the MU (dispersion) of quantitative assays?
 - what is the uncertainty of the measurement steps in qualitative tests that can influence the result?

Confidence – some sources

- Sample quality CE IVDD tubes, User Guide
- Staff documented training, PPDR, competency assessment
- Measuring equipment
 - maintained, calibrated to ISO17025 / (UKAS TPS41)
 - metrological traceability of cal. standard / ref method
 - specific standards pipettes, ISO 8655-2 / 6

Confidence

- Reagents and analytical equipment
 - CE IVDDs / accessories
 - purchasing specifications
 - traceability NIBSC stds, Eu CTS, UKBTS G.lines
 - assessed suppliers / service agents
 - IFU / SOP
 - CC, verification / validation
 - reagent BPAT, DAT
 - internal Q/C (sensitivity and specificity)
 - EQA, NEQAS
 - appropriate storage / inventory control
 - post mkt. surveillance / incident reporting to MHRA

Confidence – control over critical test parameters, e.g. Ab titration

	Validated assay tolerance nominal / range	Controllable limits	Measurement error
Pipetted volumes (25 to 200uL)	Acc. <+/- 0.8uL Prc. < +/- 0.3uL	Acc. <+/- 0.8uL Prc. < +/- 0.3uL (cal. failure)	< +/- 0.1uL
Incubation temp.	37°C +/- 2°C	37°C +/- 1.5°C	+/- 0.1°C
Incubation time	15 mins +/- 10 s	15 mins +/- 5 s	+/- 0.025 s
Red cell % conc.	0.8% +/- 0.2%	0.8% +/- 0.08%	Pipetting + Hct.
Centrifuge speed Dia-Med 24 card head			< 1 rpm

MU definition

- "A parameter, associated with the result of a measurement, that characterises the **dispersion** of the values that could reasonably be attributed to the measurand"
 - e.g. for anti-D (analyte) concentration in plasma (measurand)

reported value = 10 IU/mL +/- 2 IU/mL

Ref: ISO IEC Guide 98-3:2008. GUM.

MU principles

- Measurement result only complete when accompanied by a quantitative statement of its uncertainty
- Helps decide:
 - is result fit for its intended purpose?
 - is it consistent with other similar results?
- MU a core element of the QMS for calibration and diagnostic laboratories

MU methods

 Type A – assess the dispersion of long term Q/C data (imprecision - SD or CV)

- Ref White GH, Francis I. (2004).

- Type B sum all individually identified uncertainty components:
 - UKAS M003

$$u_{c}^{2}(y) = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i})$$

Method A - imprecision

- Assess all operating conditions:-
 - multiple calibrator and reagent batches
 - multiple operators, all equipment
 - seasonal variation.
- Ensure Q/C materials reflect patient specimens
 - beware diluted, pooled, recombinant materials
- EQAS data not recommended
 - scarcity of data points
- Use Q/C materials <u>close to clinical decision values</u>

Method A - imprecision

New methods

- ideally 30 data points
- two different batches of reagents and calibrator
- Well established methods
 - six months Q/C data (same batch of control)
 - update calculation annually
- Calculation of MU values
 - ± 1.96 x SD; or ± 1.96 x CV
 - E.g. Anti-D = 10 IU/mL <u>+/- 2 iu / mL</u> or +/- <u>20 %</u>

MU database (e- or paper)

Advantages

- most info. already available in lab
- easy updating MU values
- ready access audits / customers

Content

- analytical principle, diagnostic limitations of method
- sources of error and their control
- measurand / units
- traceability to relevant standards (e.g. NIBSC)
- clinical decision limits
- imprecision and performance targets

Chosen Q/C materials

- Anti D/c quantification
 - NHSBT Reagents Anti-D high control ~ 10 IU / mL
 - NIBSC Reagents Anti-c control ~ 10 IU / mL
- Antibody titration
 - Initial exercise NHSBT Reagents Anti-K titre 1/32
 - Future exercises NIBSC Anti-D 07/304
- FMH
 - 'In house' simulated 4 mL FMH (0.2% D+ in D-)
 - CE mark in future

Antibody titration

- Doubling dilution IAT titration Dia-Med gel cards
- Initial exercise
 - 100 BMS participants across 8 RCI labs
 - Expected titre 1/32
 - KPI 95% within +/- 1 doubling dilutions
 100% within +/- 2 DD
- Results
 - -Mode = 1 / 32,
 - range 1/16 to 1/64
 - Uncertainty = +/- 1 doubling dilution

Anti-D/c quantification

- Blood and Transplant
- Astoria Pacific 2 Analyzer BMC continuous flow analysis
- Diluted samples and ref. prep run Vs.
 - Group O bromelin treated red cells
 - Anti-D Vs. R1R1,
 - Anti-c Vs. rr
- Agglutinated cells decanted
 - Non agg. lysed / read 550nm
- FASPacII analytical software
 - sample peak height interpreted Vs. std ref curve.

Anti-D/c quantification

High anti-D Quant Q/C sample						
Lab	Α	В	С	D	Е	KPI
mean	10.06	10.06	9.88	9.79	14.69	
SD	0.95	0.76	1.12	0.71	1.25	% MU < 20%
CV	9.49	7.60	11.32	7.29	8.53	20 - 25%
1.96 x CV	18.60	14.90	22.19	14.29	16.73	> 25%

Anti-c Quant Q/C sample						
Lab	Α	В	С	D	Е	KPI
mean	11.52	10.34	10.20	9.86	9.45	
SD	0.75	1.04	0.66	0.65	0.85	% MU < 20%
CV	6.47	10.01	6.51	6.57	9.00	20 - 25%
1.96 x CV	12.68	19.62	12.76	12.88	17.64	> 25%

- Flow cytometric estimation % D+ fetal cells and FMH (mL)
- IBGRL FMH kit
- FITC- BRAD 3 Anti-D direct staining D+ cells
- FITC AVEZ 5.3 negative control

4 mL FMH cl				
Lab	А	В	С	KPI
mean	5.38	5.37	5.42	
SD	0.16	0.23	0.18	% MU < 15%
CV	2.96	4.25	3.32	15 - 20%
1.96 x CV	5.80	8.32	6.51	> 20%

References

- Medical laboratories Requirements for quality and competence (ISO 15189:2012)
- ISO IEC Guide 98-3:2008. MU Part 3; Guide to the expression of uncertainty in measurement (GUM)
- White GH, Francis I. (2004). Uncertainty of Measurement in quantitative medical testing <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1934961/</u>
- UKAS M003 The expression of uncertainty and confidence in measurement, UKAS Edition 3, November 2012 http://ndcsb217:8088/upload/controlled_documents/ESD93.pdf

Thank you – any questions?