

Importation of plasma: SaBTO review

Stephen Thomas PhD FRCPath

Disclosures / roles

- Associate Director, Manufacturing Development, NHSBT
- SaBTO member, Blood Service Manager
 - Chair of the Paediatric Components Working Group (task and finish)
- Deputy Professional Director, JPAC

Scope of the review

- The importation of plasma (for the manufacture of FFP and cryoprecipitate) and the use of apheresis platelets for patients born after 1995 or with TTP.
- This work will <u>not</u> consider the following:
 - leucodepletion, due to the many other benefits it brings in reducing adverse transfusion reactions and transmissions of infections such as CMV;
 - importation of fractionated plasma derivatives, as this is outside the remit of SaBTO;
 - exclusion of recipients of blood (after 1980) from donating, as this prevents the onward transmission of infections while having negligible impact on supply.

C

Q 🕁

Collection

SaBTO reports and guidance documents

Reports published by the advisory committee on the Safety of Blood, Tissues and Organs (SaBTO).

Published 23 December 2016 Last updated 19 February 2018 — <u>see all updates</u> From: <u>Department of Health and Social Care</u>

<u>SaBTO</u> advises UK ministers and health departments on the most appropriate ways to ensure the safety of blood, cells, tissues and organs for transfusion or transplantation.

Guidance reports

Risk reduction measures for variant Creutzfeldt-Jakob disease: PCWG

Related content

SaBTO annual reports

<u>Blood, tissue and cell donor selection</u> <u>criteria report: 2017</u>

SaBTO microbiological safety guidelines 2017

Options considered

Option	Recipients of non-UK sourced plasma	
U16 + TTP	Patients under 16 years of age	
	Patients with TTP	
U1 + TTP	Patients under 1 year of age	
	Patients with TTP	
None + TTP	Patients with TTP only	
U16	Patients under 16 years of age only	
U1	Patients under 1 year of age only	
None	None	

Option	Recipients of apheresis platelets	
U16	Patients under 16 years of age	
U1	Patients under 1 year of age	
None	None	

Workstreams

- Blood safety risk assessment
- Contextual ethics, social concern, perception
- Operations hospitals and blood services
- Health economics
- Stakeholder engagement

Workstreams

• Blood safety – risk assessment

- Contextual ethics, social concern, perception
- Operations hospitals and blood services
- Health economics
- Stakeholder engagement

Risk assessment – modelling

- Developed with oversight of expert ACDP TSE Subgroup:
 - Evidence, data, and interpretation
 - Assumptions, input parameters, and model calibration

"... Specific figures for the number of cases and infections, while uncertain and subject to revision in the light of further data, are considered to be of the right order of magnitude"

Risk assessment – key assumptions

- Highly precautionary
- Simple population based model assumes subclinical carriers
 - Dietary BSE exposure 1978 2000 (Appendix III study)
 - Subclinical carriers: 1 in 1,800 (95% CI 1 in 1,000 to 1 in 3,700)
- Calibrated to clinical cases in under 76 year olds
 - All observed clinical cases to date
 - Large range of input parameters covering "worst case"
 - Calibration allows for possible high levels of under-ascertainment in older population
- Main inputs (held constant)
 - Component numbers
 - Donor distributions
 - Recipient distributions
 - Survival functions

- 2017 values
- NHSBT
- Multiple sources
- EASTR study

Risk assessment – key assumptions

Plasma

- 50 year horizon (transfusions)
- 0-3 cases before 2018 in under 76s
- Negligible vCJD risk non-UK plasma
- TTP proportion of chronic recipients of FFP of all ages
- Includes leucodepletion

Platelets

- 60 year horizon (transfusions)
- 0-3 cases before 2018 in under 76s
- Apheresis used for younger patients
- Excludes HLA matching
- Relative risk apheresis/pooled 1:4 due to increased donor exposure
- Includes leucodepletion

Risk assessment – clinical cases

Component	Option	Clinical cases (Infected after 2020)	
		Total	Additional
Plasma	Current practice	2.8 (<0.05 - 27.1)	-
	U16 + TTP	3.6 (0.1 - 36.9)	0.8 (<0.05 - 9.8)
	U1 + TTP	3.8 (0.1 - 38.7)	1.0 (<0.05 - 11.6)
	None + TTP	4.0 (0.1 - 41.2)	<mark>1.2 (<0.05 - 14.2)</mark>
	U16	3.7 (0.1 - 37.7)	0.9 (<0.05 - 10.6)
	U1	3.9 (0.1 - 39.6)	1.1 (<0.05 - 12.4)
	None	4.1 (0.1 - 42.2)	<mark>1.3 (<0.05 - 15.0)</mark>
Platelet	Current practice	<mark>5.7 (0.1 - 69.9)</mark>	-
	U16	8.1 (0.1 - 103.6)	2.4 (<0.05 - 34.0)
	U1	8.6 (0.1 - 110.7)	2.9 (<0.05 - 41.1)
	None	8.8 (0.1 - 114.6)	<mark>3.1 (<0.05 - 44.9)</mark>

Risk assessment –additional clinical cases

Plasma (No import)

- Median: 1 in 5.2m
- Upper 95% CI: 1 in 440,000

Platelets (All pooled)

- Median: 1 in 3.1m
- Upper 95% CI: 1 in 210,000

Comparison

- RBC: 1 in 11m (Upper 95% CI: 1 in 1.8m)
- Dietary: ~1 in 3m (176 in 66 million)

Figure from SHOT Annual Report 2017 www.shotuk.org

Workstreams

- Blood safety risk assessment
- Contextual ethics, social concern, perception
- Operations hospitals and blood services
- Health economics
- Stakeholder engagement

Contextual issues

- Please refer to published report for full discussion
- Briefly:
 - Duty to protect patients from harm
 - Acceptable risk sufficient to justify change in policy?
 - Treating different groups fairly
 - Fairness to all patients

Workstreams

- Blood safety risk assessment
- Contextual ethics, social concern, perception
- Operations hospitals and blood services
- Health economics
- Stakeholder engagement

Challenges to importation

- Source country must appear on a DHSC-approved list of nine countries with sufficiently low risk of vCJD
- Source must comply with the EU Directive 2002/98/EC (effectively reducing this list to four EU countries)
- Supplier must have spare capacity to meet its domestic needs as well as the volume required for export
- Collection and supply services must conform to UK regulatory standards and national guidelines eg
 pre-donation health check and post donation microbiology screening eg HEV
- The electronic data file and label barcodes must be compatible with NHSBT's IT system.
- The Blood Establishment had to implement the process to MB treat the plasma at source
- Only one bid was received in response to the 2018 invitation to tender; incumbent supplier did not bid.
 - Likely that other potential suppliers felt that the terms of the specification were too onerous to meet
 - There are many alternative buyers for plasma these are mostly plasma fractionation companies based in the same jurisdiction and having less demanding specifications.
 - It is expected that obtaining a supply from suitable European countries will become increasingly difficult as countries move to become self-sufficient in the supply of plasma

Blood service provision

	Paediatric plasma components	Apheresis platelets
NHSBT	Import 20 to 30K pa units of MBFFP from Poland Issue some as MBFFP (60 mL split or 250 mL bag) The majority is manufactured into MB Cryo (single or pools of 6). Supply other UKBS	50 % apheresis Provided as splits or ATD for paeds and HLA-matched adults.
WBS	Wholesale for OctaplasLG and fibrinogen concentrate also import a small amount of MBcryo from NHSBT	40 % apheresis
NIBTS	Import MBFFP and MBcryo from NHSBT Supply OctaplasLG for renal transplant patients	80 % apheresis
SNBTS	Import 60 mL MBFFP from NHSBT and single MBcryo (not pools). Supply OctaplasLG for adults	80% apheresis, reducing to 60% Provided as splits or ATD for paeds and HLA-matched adults
IBTS	Supply fibrinogen, manufacture very small amounts of cryo Wholesale for OctaplasLG and fibrinogen concentrate	70% apheresis, under review

Increasing demand

Plasma demand for patients born on or after 1st Jan 1996

Hospital feedback - trauma centres

- 18/23 Major Trauma Centres and 4/4 children's MTC responded
- Four MTCs use UK FFP in the pre-hospital setting
- For the initial stage of resuscitation, 60% said that they use UK FFP, and later on they move to non-UK plasma.
- Most trauma centres indicated that rapid provision of plasma is more important

Hospital feedback – imported cryo

- Survey of paediatric cardiac / high-use non-cardiac hospitals
 - 14 in total
 - 3 non-compliant (UK or off-label Fgn)
 - 3 compliant, no complaints
 - 5 mentioned supply issues
 - 5 mentioned cost issues

Workstreams

- Blood safety risk assessment
- Contextual ethics, social concern, perception
- Operations hospitals and blood services
- Health economics
- Stakeholder engagement

Cost-effectiveness – Overview

- Convert clinical cases to QALY loss
- Unit costs from NHSBT and indicative cost of SD-FFP
- All discounting @1.5%
- Plasma CE two scenarios:
 - 1. Hospitals continue using MB-FFP or SD-FFP
 - 2. Hospitals all use SD-FFP only

Cost-effectiveness – Plasma

Option	Additional	Savings (£m)		ICER (£m p	oer QALY)
	QALY loss	MB-FFP /	SD-FFP	MB-FFP /	SD-FFP
		SD-FFP	only	SD-FFP	only
U16 + TTP	8.9	413	418	46	47
	(0.1 - 87.6)			(5 - 3,183)	(5 - 3,222)
U1 + TTP	11.5	448	452	39	39
	(0.2 - 115.3)			(4 - 2,705)	(4 - 2,728)
None + TTP	15.7	497	<mark>501</mark>	32	<mark>32</mark>
	(0.2 - 159.7)			(3 - 2,201)	<mark>(3 - 2,218)</mark>
U16	9.9	435	437	44	44
	(0.1 - 94.1)			(5 - 3,010)	(5 - 3,018)
U1	12.5	471	471	38	38
	(0.2 - 121.9)			(4 - 2,585)	(4 - 2,584)
None	16.8	<mark>52</mark>	. <mark>0</mark>	<mark>31</mark>	L
	(0.2 - 166.4)			<mark>(3 - 2,</mark>	<mark>143)</mark>

Cost-effectiveness – Conclusion

- Under all options the saving per QALY lost is greater than:
 - NHS marginal threshold: £15k per QALY
 - NICE threshold: £20k £30k per QALY
 - Societal value (WTP): £60k per QALY (WTA £360k per QALY)
- Move to UK sourced plasma and pooled platelets for all
- Only considers clinical cases of vCJD and direct blood costs

Workstreams

- Blood safety risk assessment
- Contextual ethics, social concern, perception
- Operations hospitals and blood services
- Health economics
- Stakeholder engagement

Stakeholder engagement

- The ABO risk based decision making framework identifies four types of stakeholder depending on influence and interest.
 - <u>Involve</u>, and <u>Collaborate</u> groups are represented by the composition of the working group or established communication routes
 - <u>Inform</u> and <u>Consult</u> are less well represented and engagement with these groups is required before final recommendations can be made.

HIGH	Stakeholder is Important Q3	Stakeholder is a Key Player Q4
er Influence	EXAMPLE Front Even of the interest of the issue.	Collaborate <i>Proactive, Strategic Involvement</i> Involve and consult. Seek to understand their views and issues and explore ways to address them. They may be key players who are influential and in a position to show leadership on the issue.
Stakehold	Stakeholder is Latent Q1	Stakeholder is a Potential supporter/derailer Q2
	Responsive Approach Open channels of communication and keep them informed.	Proactive Involvement Open channels of communication and informa- tion sharing. Proactively solicit their views and enhance their capacity to be involved.
	Stakeholde	r Interest

Informal Sessions

Email responses received

- Haemophilia Scotland
- The Haemophilia Society
- TTP Network

- Sickle Cell Society
- The Platelet Society
- TTP Network

Formal Sessions

- Haemophilia Wales
- The Haemophilia Society
- Haemophilia Scotland
- CJD Support Network
- Great Ormand Street Hospital
- Bristol Royal Infirmary
- Birmingham Children's Hospital
- Octapharma
- Macopharma

Patient groups, including charities and clinical networks representing patients

Hospital transfusion laboratories

Commercial suppliers

Clinicians treating individuals affected by the proposals

Do not support the recommendation

No objection to the recommendation*

Hospital transfusion laboratories

Patient groups,

clinical networks

including charities and

representing patients

Support the recommendation

*TTP Network wrt SD-FFP

Recommendations

- Based only on vCJD risk, the current risk reduction measures of the provision of imported plasma and apheresis platelets for individuals born on or after 1st January 1996 or with TTP be withdrawn.
- This is due to the revised risk assessment showing that the total number of deaths due to vCJD transmitted by plasma or platelets is predicted to be very low and these risk reduction measures would only prevent a small number of additional deaths.
- Removing the current risk reduction measures (importation of plasma and provision of apheresis platelets) will provide benefits in terms of more equitable provision of components, less operational complexity and risk, and will allow more resources to be deployed to save lives elsewhere in the NHS.
- Clinicians will still be expected to follow local and national guidelines on managing individual conditions (such as the British Society for Haematology Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies).
- It is important to note that the conclusions from the analysis on plasma cannot be extrapolated to the manufacture of plasma derived medicinal products from fractionation of plasma sourced in the UK.
 Further work would be required to determine the risks and benefits of using UK plasma for fractionation.

What next?

- Instructions received from ministers of health to implement these changes (not NI)
- Risk assessment regarding viral risk of UK components
 - Re removal of PI process
 - Under review by UK Blood Services (JPAC)
- Blood service hospital discussions...

NHSBT response

Towards UK plasma self-sufficiency

- NHSBT has advised DHSC that transition to UK plasma selfsufficiency will take c.8 months
- This transition includes NHSBT planning for the transfer of EXISTING Imported/MB demand to UKFFP/cryo
- Considerations over viral risks/PI requirements for vulnerable patient groups are being considered by a number of safety groups
- Final determination by JPAC/SaBTO will inform NHSBT's implementation to meet patient component requirements

Maintaining sufficiency of supply through the transition to UK plasma selfsufficiency must be treated as an NHS-wide joint endeavour; NHSBT will move as quickly as possible to establish self-sufficiency but stable hospital ordering and demand is an essential prerequisite.

HOSPITAL response

Intelligence re: hospital intent

- NHSBT has asked hospitals to consider this change with their HTT to agree their intended response
- NHSBT will shortly survey hospitals to obtain that intelligence to underpin our demand planning to ensure sufficiency of supply:
 - level (and speed) of any demand changes to UK plasma components and
 - preferred blood group mix in which those components will be requested
- Demand and component specification will inform costs/prices
- SaBTO recommendations do not alter current treatment guidance for TTP, nor permit use of UK plasma for (medicinal) fractionation

This change came after the 2020/21 NCG commissioning round. Therefore, DHSC has agreed to an extraordinary NCG meeting specifically to commission 2020/21 plasma prices in an effort to better support hospital budget-setting

Summary of key challenges

Movement to self-sufficiency is a joint endeavour between hospitals and NHSBT and will take time

We need to work together to avoid stock outages arising from uncontrolled demand shifts

Whilst planning/implementation is underway, NHSBT is asking hospitals NOT to change their current MB/UK ordering patterns

Members of Paediatric Components Working Group

Dr Stephen Thomas Member of SaBTO; Blood Service Manager, NHSBT - Chair

Dr Susan Brailsford Member of SaBTO; Consultant in Epidemiology & Heath Protection NHSBT/PHE

Prof Richard Knight Member of SaBTO; Consultant Neurologist, National CJD Research & Surveillance Unit, Uni of Edinburgh

Member of SaBTO; Consultant Haematologist, SNBTS Dr Lynn Manson

Member of SaBTO; Medical & Research Director, NHSBT

Dr Gail Miflin Dr Helen New Cons Prof James Mason Heal Dr Anne-Marie Slowther Dr Jonathan Wallis Cons Gillian Hollis Men Matthew Katz Anal

bllege Hospital & NHSBT

Secretariat:

Dr Gary Mallinson SaBTO Secretariat/JPAC

Emily Coelho SaBTO secretariat; DHSC

Observer:

Dr Stephen Field, Medical & Scientific Director, IBTS