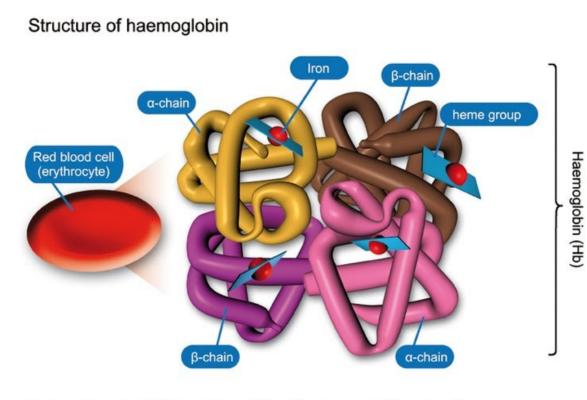


Genotyping the haemoglobinopathy patient population in England

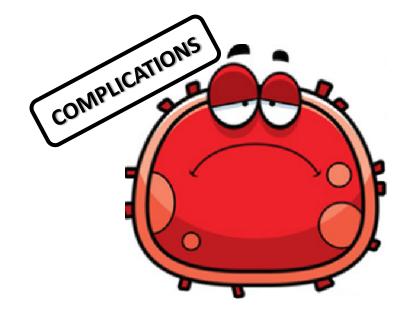
Karen DeSay



Outline

Evidence to support transfusion of haemoglobinopathy patients in the UK

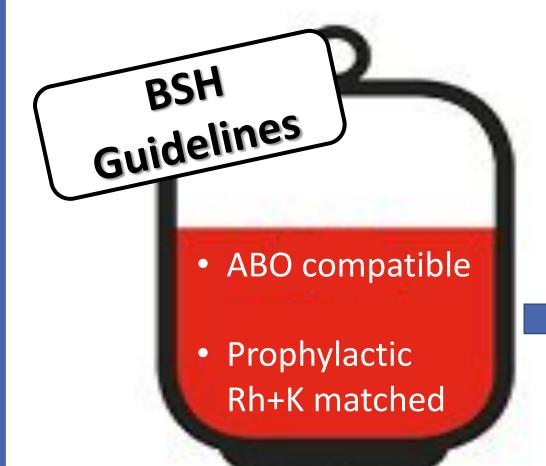
Update on data analysis from NHSBT haemoglobinopathy genotyping service


Haemoglobinopathies

Each erythrocyte (RBC) contains ~270 million haemoglobin molecules

- In UK, most common is SCD
- Seen in BME population
- Range of clinical effects
- Transfusion therapy key treatment

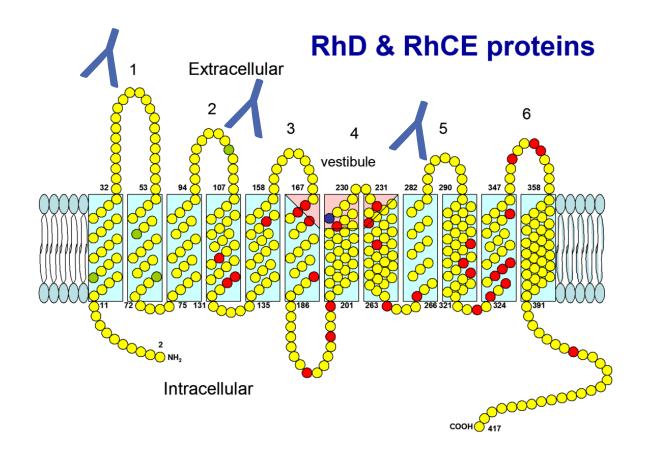
Challenges of transfusion therapy in the HGP population



Alloimmunisation Haemolytic transfusion reactions (can include hyperhaemolysis) Autoimmune haemolytic anaemia

Optimum survival of donated RBCs

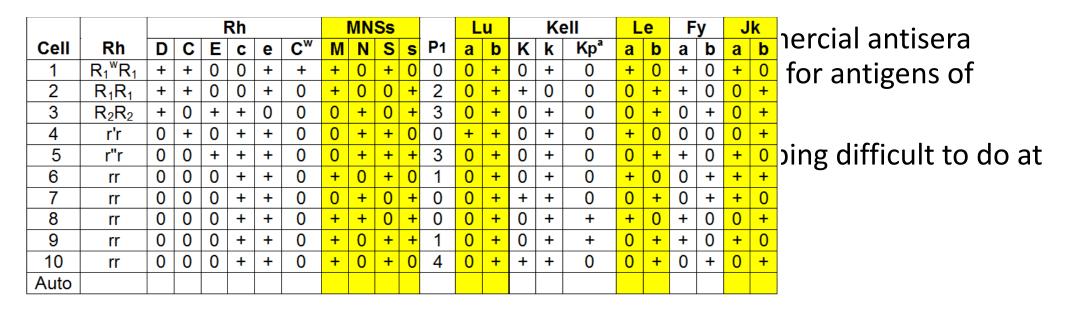
"Untransfusable" patients 8-10 alloantibodies Require rare frozen units (if available)


Reducing risk of alloimmunisation Optimising RBC survival

Globally reported

Rh alloimmunisation despite Rh matching by serological methods

Why Rh alloimmunisation despite matching?


- Non Standard Rh antibodies (NSRH) e.g. e variant with allo anti-e
- Number of patients with NSRH in UK unknown
- Collective knowledge of clinical significance of NSRH is limited

Why genotyping over serology?

Majority of donors from Caucasian population

Majority of HGP patients from Black Minority Ethnic (BME) population

Different frequencies of RBC antigens in different ethnic populations

Antigram showing 9 major blood group systems and used to identify antibodies in patient plasma

Study aims

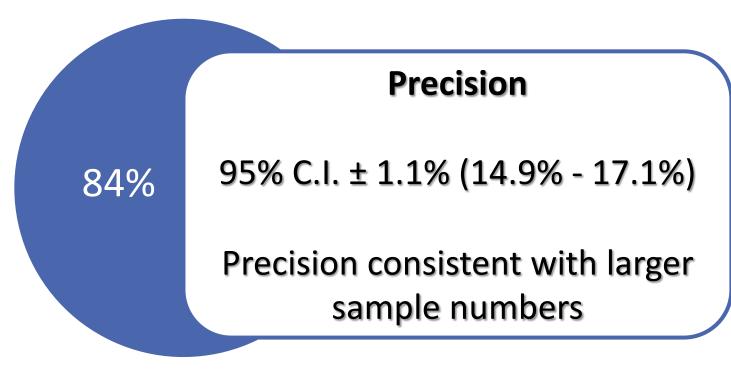
The burden of morbidity due to Rh variants

3

NHSBT genotyping service (overview)

IBGRL Haemoglobinopathy genotyping panel

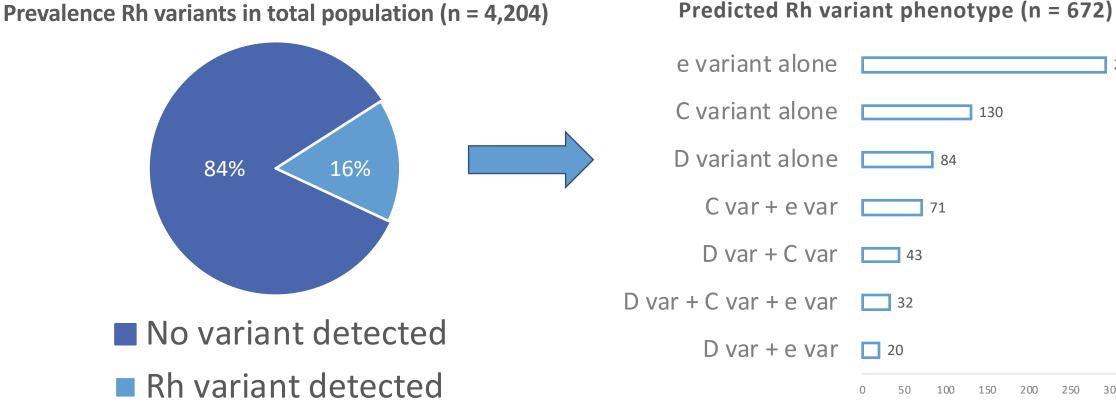
- In-house selected Rh variants designed with clinicians
- Algorithm to translate genotype to predicted phenotype
- Offered to all HGP patients in England Expected ~11,000, study – 4,204


Data analysis

- Analyse data from HGP genotyping service
- Immunisation data collected from:
 - Surveys (hospital immunisation data)
 - Hematos (NHSBT LIMS)

Large dataset, national representation

Result : Prevalence of selected Rh variant phenotypes


Prevalence Rh variants in total population (n = 4,204)

No variant detected

Rh variant detected

Result : Prevalence of selected Rh variant phenotypes

e variant alone 292 C variant alone 130 D variant alone 84 C var + e var 71 D var + C var 43 D var + C var + e var \square 32

20

150

200

300

350

Prevalence of immunisation in blood recipients with Rh variants

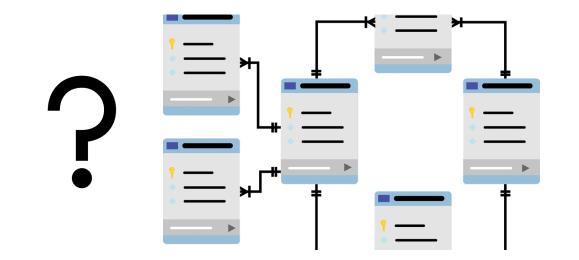
2

Hospital survey (n= 672)

SURVEY				
• • • •	Ew			
• —				

1. History of transfusion (Y/N)

2. History of antibodies? (Y/N)


3. Antibody specificity

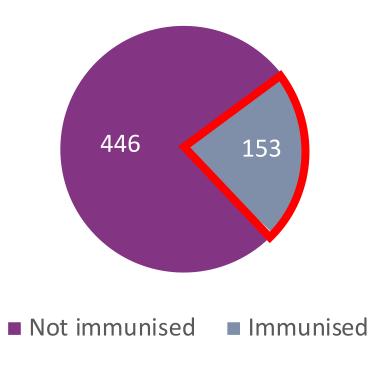
Survey results

672 predicted 575 returned Rh variant patients surveys

Response rate = 86%

NHSBT LIMS (Hematos) data query (n= 672)

1. History of transfusion (Y/N)

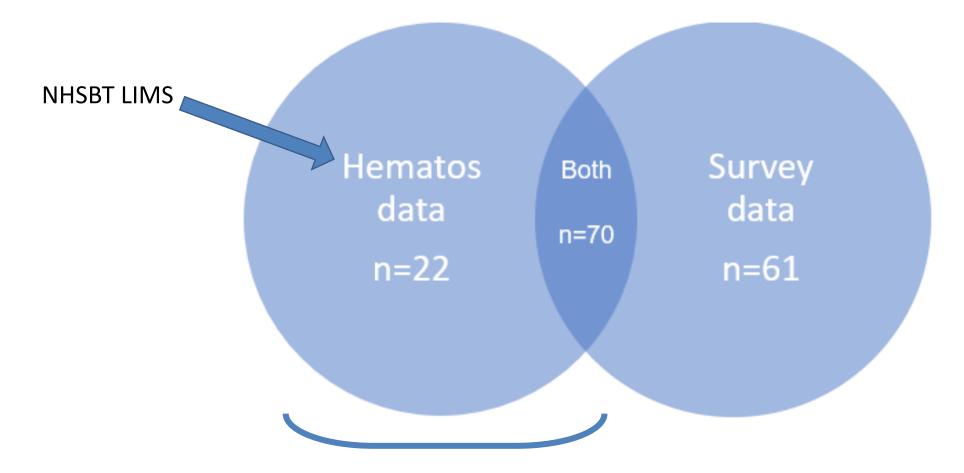

2. History of antibodies? (Y/N)

3. Antibody specificity

Immunisation data: Combination of individual hospital & national LIMS results

Results: overall prevalence of immunisation

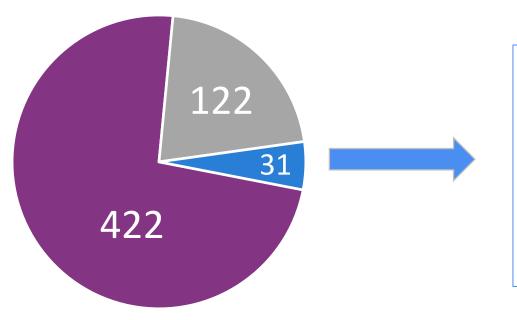
Patients with Rh variants with history of antibodies (n=575)


26.61% immunisation

(95% C.I. 23 – 30%)

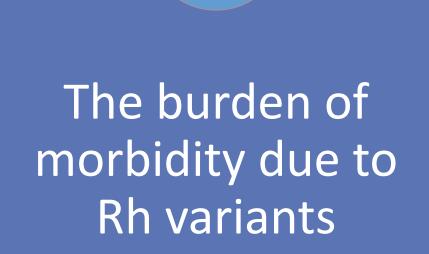
Note:

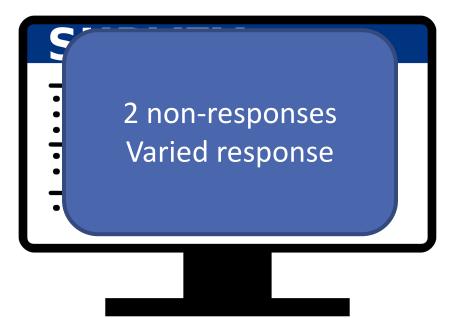
- Includes reported auto and allo specificity.
- Both clinically significant and not clinically significant e.g. anti-CR1 antibodies included


Combined national and individual hospital antibody data (n=575)

60% all antibodies confirmed by NHSBT

Patients with non standard Rh antibodies (NSRH)

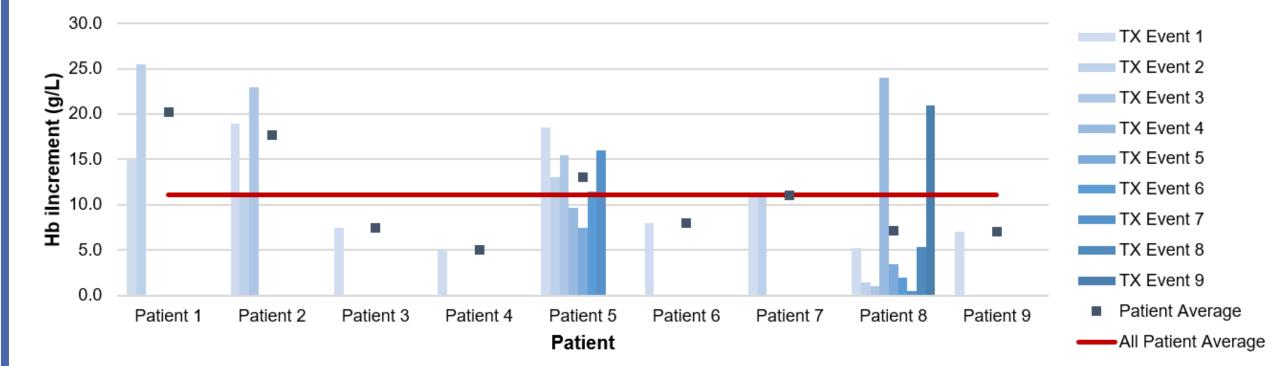

Surveyed respondents (n=575) Patients with Rh variants


• 5% of total surveyed Rh variant population

 Incorrectly assigned as autoantibodies

Not immunisedImmunisedNSRH immunised

Survey 2: Clinical follow up (n=31)



- 1. History of pregnancy (Y/N)
- 2. Length of hospital transfusion record in months
- 3. Number of RBC units ever transfused at hospital
- 3. History of:
 - Transfusion reactions
 - Delayed haemolysis
 - Hyperhaemolysis
 - Poor Hb increment (where possible, please provide pre and post transfusion Hb values)

Results: Survey 2 response

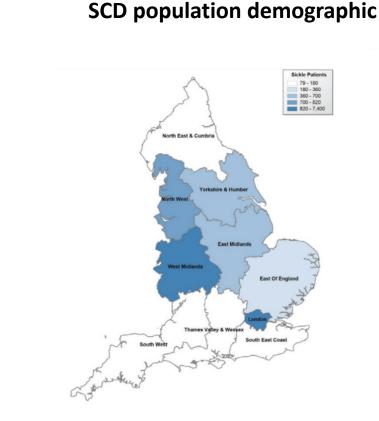
31 patients has 33 NSRH antibodies. Transfused 1,737 RBC units as a group

Parameter (n = responses to question)	Range	
Sex (n=31)	63% F : 36% M	
Age (n=31)	4-64	
Length of transfusion history (n=29)	16-351 months	
Number RBC units transfused (n=29)	0-351 RBC units In the presence of additional	
Evidence of transfusion reactions (n=27)	2 antibodies	
Evidence of poor Hb increment (n=23)	All achieved clinically useful increments	

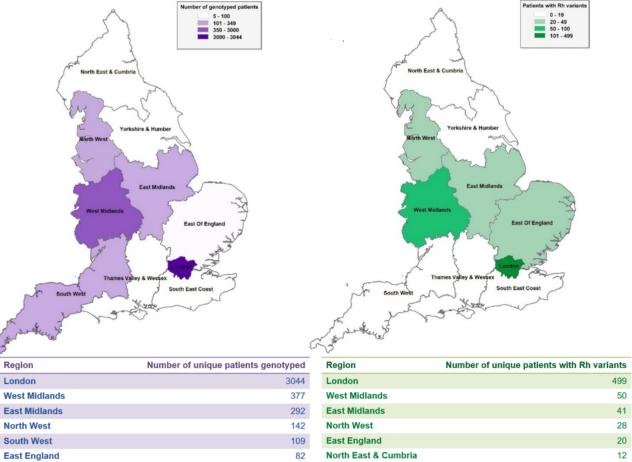
Haemoglobin increment (g/L) per RBC unit transfused

Clinical summary: many patients with Rh Small cohort (incomplete data), however no clinical Variants transfused incompatible blood achieve clinicality useful increments

Comparison of population and survey respondent demographic


North East & Cumbria

Thames Valley & Wessex


Yorkshire & Humber

South East Coast

Total

Region	No. Patients	Region	No. Patients
London	7,277	East of England	216
West Midlands	921	Thames Valley & Wessex	176
North West	721	South East Coast	119
Yorkshire & Humber	692	South West	98
East Midlands	557	North East & Cumbria	79

71

49

32

5

4203

Respondent demographic

Region	Number of unique patients with Rh variants
London	499
West Midlands	50
East Midlands	41
North West	28
East England	20
North East & Cumbria	12
South West	11
Yorkshire & Humber	8
Thames Valley & Wessex	3
South East Coast	0
Total	672

Sequencing variant = variant antigen?

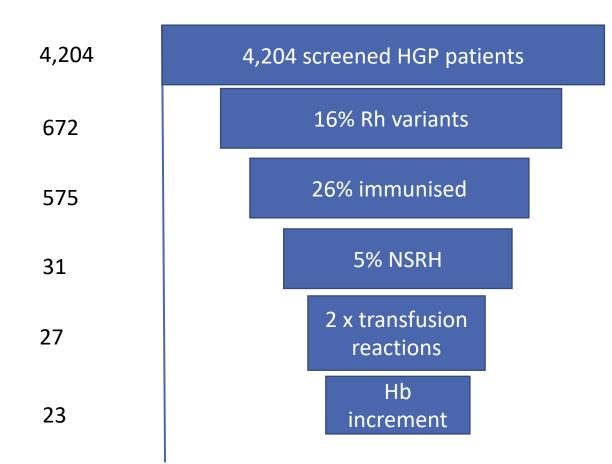
- Genotyping panels can detect sequence variants which may not be associated with serologically defined variants
- Good comparison of NHSBT SNV frequencies with gnomAD data (database of large-scale sequencing projects)
- Predict *clinically significant* variant phenotype

Limiting factors to a genotype matching programme

TECHNOLOGY

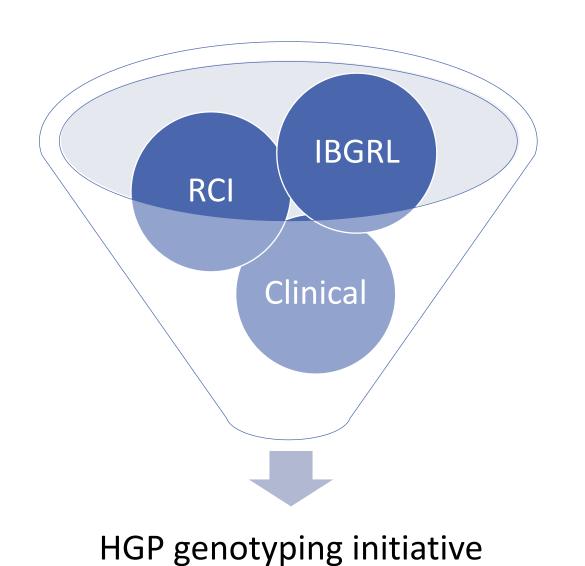
DONORS

COST


Should we genotype match patients?

Benefits

- Improved management and utilisation of the existing inventory of blood from BME donors
- Increase antigen-negative inventories and identifying rare donors
- Prevention and early intervention avoid problems and costs associated with multiple alloantibodies
- Matching for blood group systems outside Rh e.g. MNS, FY


Is the cost in proportion to the medical benefit?

Summary and conclusion

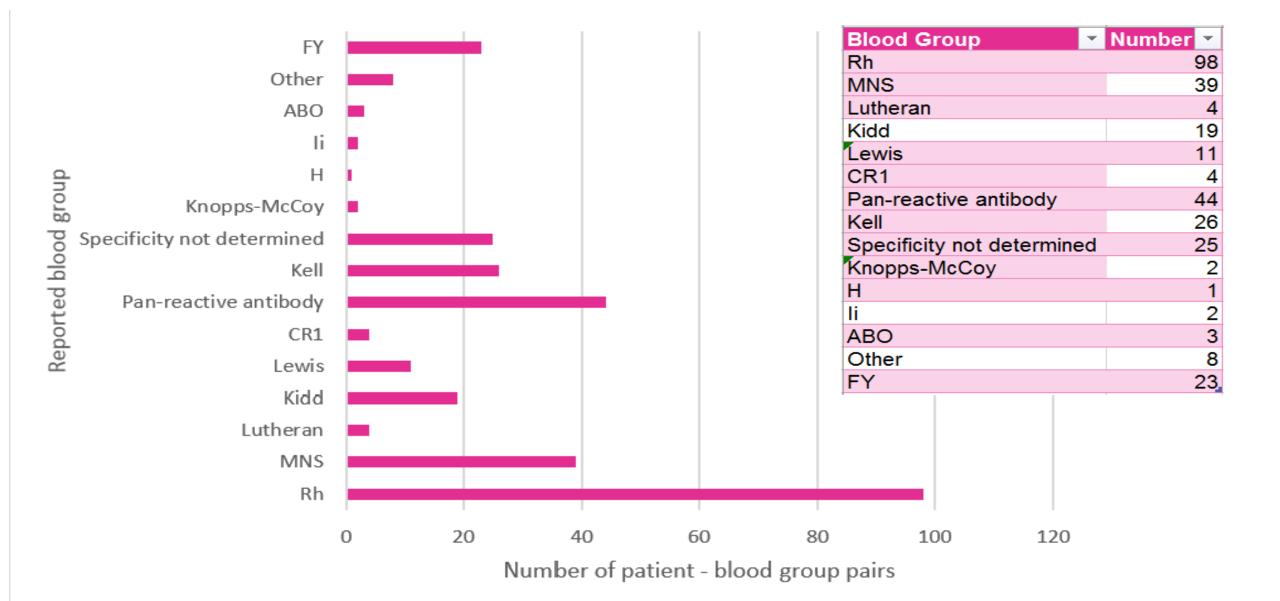
- Small group of NSRH patients
- No definitive correlation between NSRH to poor clinical outcome
- Inform matching strategies

Thank you

 NHS staff: Hospitals BMS and transfusion practitioners

Potential matching strategies

- Provide genotype matching for everyone not cost effective
- Prioritised for paediatric patients or patients who have formed one antibody
- Patient with haemoglobinopathies or heavily alloimmunised patients
- Alloimmunised patients with clinical evidence of DHTR/ poor haemoglobin increment


Antibody detected	Phenotype (Serological)	Predicted Phenotype (Genotype)	Classification	Transfuse	Possible outcomes if NOT genotype matched
Anti C	Rh C positive	C positive	Auto antibody	C positive	N/A
Anti C	Rh C positive	C variant	Allo antibody (NSRH)	C negative	Poor Hb increment Delayed HTR etc

In a BAME patient,

BMS: Don't assign Rh auto antibody status just because the person appears to be antigen positive

Clinical care: Be alert for patients not incrementing as expected with auto anti-Rh on their report

Result validation

Reference SNP cluster ID	NHSBT HGP genotype population		gnomAD population		Difference between African population in gnomAD and NHSBT HGP population
	Wildtype	Variant	Variant (all ethnicities)	Variant (African population)	
RHD455 (rs17418085)	0.982105	0.017895	0.00676	0.06097	3.4 times greater
RHD667 (rs1053356)	0.966207	0.033793	0.01255	0.1078	3.19 times greater
RHDEX5 (rs148014996)	0.9622195	0.0377805	0.004387	0.04266	1.13 times greater
RHCE712 (rs144163296)	0.992109	0.007891	0.00122	0.01092	1.38 times greater
RHCE667 (rs147357308)	0.9928724	0.0071276	0.001467	0.01282	1.79 times greater
RHCE733 (rs1053361)	0.7955302	0.2044698	0.02427	0.2312	1.13 times greater
RHCE1006 (rs116261244)	0.9623247	0.0376753	0.003758	0.0398	1.1 times greater

Result validation

Reference SNP cluster ID	Difference: SNP frequency African population in gnomAD and NHSBT HGP population
RHD455	3.4 times greater
(rs17418085)	
RHD667	3.19 times greater
(rs1053356)	
RHDEX5	1.13 times greater
(rs148014996)	
RHCE712	1.38 times greater
(rs144163296)	
RHCE667	1.79 times greater
(rs147357308)	
RHCE733	1.13 times greater
(rs1053361)	
RHCE1006	1.1 times greater
(rs116261244)	

- Specifically designed to detect SNVs of clinical significance whereas gnomAD detects sequence variants which may or may not be associated with serologically defined variants
- The NHSBT HGP genotyping panel might therefore be a better predictor of clinically significant variant phenotype

Impact on product selection

Predicted phenotype D+	Potential Ab Auto/allo anti-D	Product advice without Ab D+	Product advice with Ab D–
D ^{var}	Anti-D	D-*	D-
D+ E+ e ^{var}	Anti- hr ^s /-hr [₿]	e-	e– (D+ E+)
D+ E– e ^{var}	Anti- E, anti-hr⁵/hr⁵	E—	 E- E- and IVIG cover If unacceptable haemolysis D+ E+ e-
D– E– e ^{var}	Anti-D, anti-E, anti-hr⁵/hr⁵	D- E-	 D– E– D– E– and IVIG cover If unacceptable haemolysis r"r"
D+ C ^{var} c+	Anti-C	C-	C-
D-C ^{var} c+	Anti-D, anti-C	D C	D-C-
D ^{var} C ^{var} e ^{var} E–	Anti-D, anti-C, anti-hr ^s /hr ^b , anti-E	D– C– e+ E–	 D-C-e+E- e+ IVIG cover If unacceptable haemolysis r"r"
D ^{var} C ^{var} e ^{var} E+	Anti-D, Anti-C, anti-anti-hr⁵/hr⁵	D– C– e+ E-	 D-C-e+E- E-+IVIG cover If unacceptable haemolysis r"r"

* If there is a history of D+ transfusion, without production of anti-D, D+ may be considered.

Matching strategy – what do we need to get there?

- The development of data handling protocols so results are available via PULSE (
- Operational, medical and scientific competencies to support any future adoption of genotyping for all blood donors
- charged hospitals, would they be willing to pay?