

Immune Effector Cells The CAR-T revolution

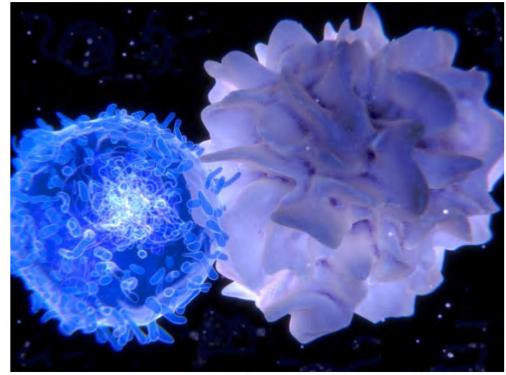
Dr James Griffin

Consultant Haematologist

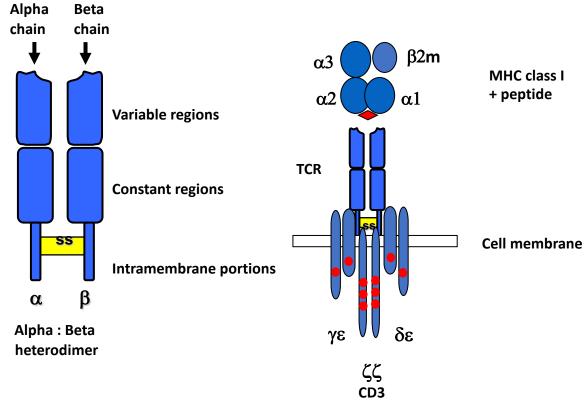
Clinical Director Therapeutics, NHSBT

#BBTS2019

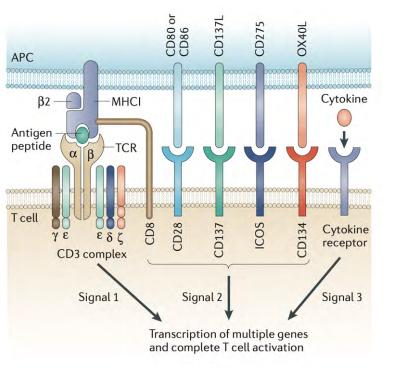
Disclosures



- Educational support Kite, a Gilead Company, Novartis
- Consultancy Sanofi, Celgene



(Credited: Shutterstock - Juan Gaertner)



The TCR

Signals 1, 2 and 3

DAMPs and PAMPs MHC PRR class II CD4 Peptide Signal 1: antigenspecific interactions TCR Signal 2: co-stimulatory molecules CD40L CD40 Signal 3: instructive cytokines 00 IL-12 IL-12R Activated DC CD4⁺T cell

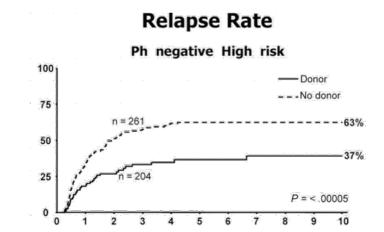
Nature Reviews | Immunology

Nature Reviews Cancer **13**, 525–541 (2013) Nature Reviews Immunology 14, 719-730

BBTS 2019

Evidence for T cell immunotherapies

The allo response


Long term remissions post allo-HSCT

Ag-specific T cells

Effective vs viruses (eg. CMV, Adeno, EBV)

Immune surveillance

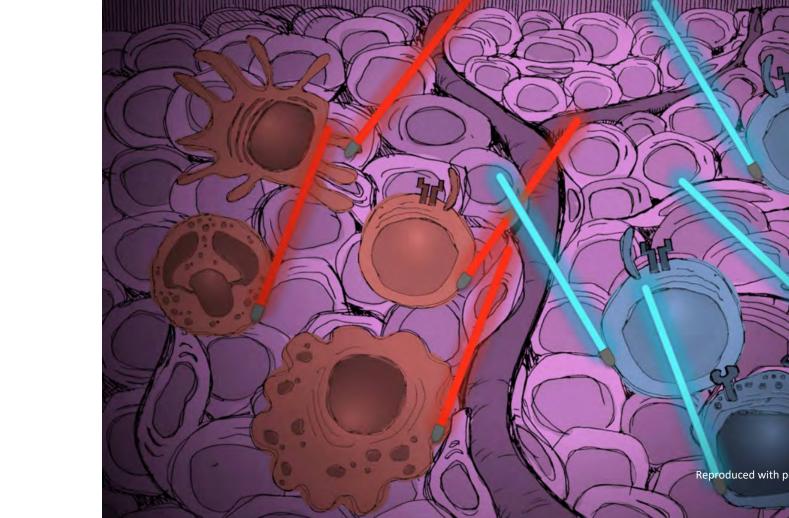
Increased malignancies; Checkpoint inhibitors

Donor-attributable reduction in relapse

GVL effect mediated by Donor T cells

Goldstone et al, Blood 2008 (UKALLXII/ECOG2993)

Current Therapy for Cancer

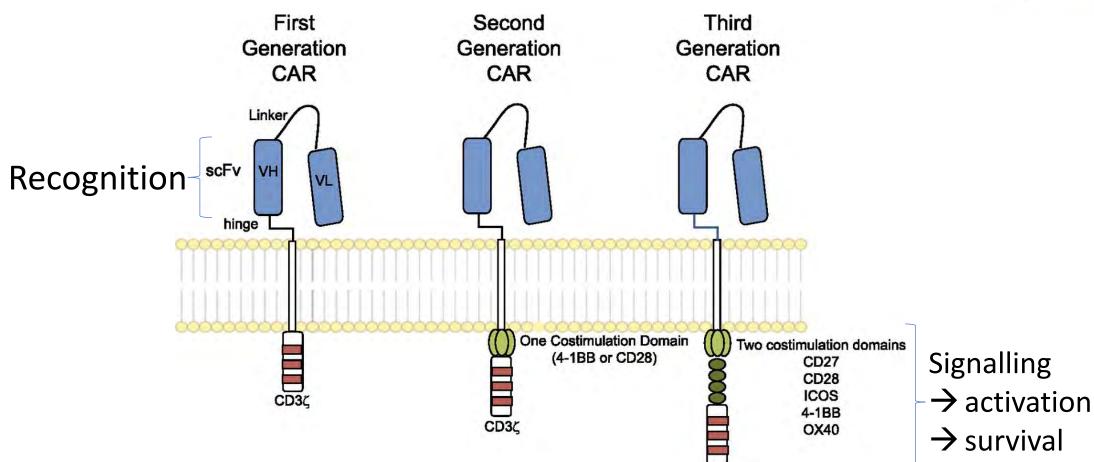


TUXOR WARS

THE LYMPHOCYTE AWAKENS

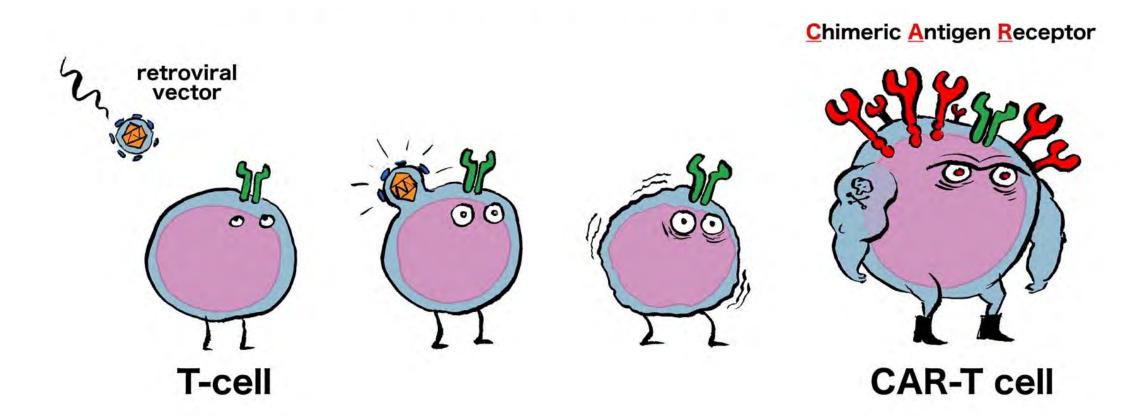
Reproduced with permission by Dr P Velica

Why genetically modify T cells?


- Generate large numbers of Ag-specific T cells of known avidity
- Redirect specificity towards known Ag (eg TAA; viral epitope)
- Augment T cell function
- Enhance in vivo persistence
- Alter homing in vivo
- Include suicide switches
- Influence differentiation status
- Overcome tolerance to self
- Ability to test specific T cell subtypes (eg, Tregs, Tcm)
- Generate the "universal T cell"

Chimeric antigen receptors

blood


 \mathbf{S}

CD3C

Generating Super-soldiers

Reproduced with permission from Pedromics

What Do You Need

BBTS 2019

- Cells facility, machine, staff
- Logistics/cold chain
- GMP facility
- Gene for receptor

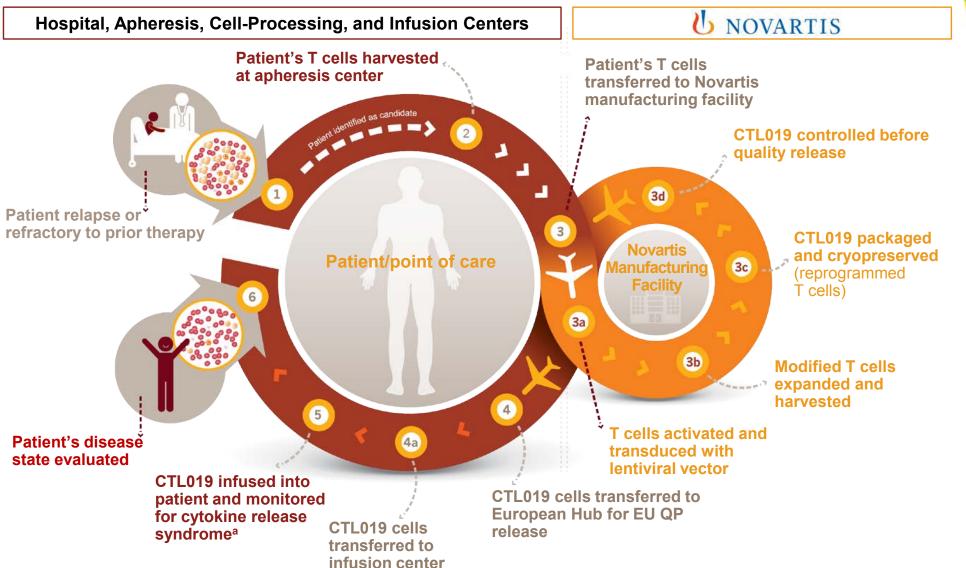
- Mechanism to insert gene (usually viral vector)
- Culture facilities to increase the number of cells/select transduced cells
- Hospital, pharmacy, ITU etc.
- Regulation, Quality Assurance

BRIEF REPORT

Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia

The NEW ENGLAND JOURNAL of MEDICINE

Stephan A. Grupp, M.D., Ph.D., Michael Kalos, Ph.D., David Barrett, M.D., Ph.D., Richard Aplenc, M.D., Ph.D., David L. Porter, M.D., Susan R. Rheingold, M.D., David T. Teachey, M.D., Anne Chew, Ph.D., Bernd Hauck, Ph.D., J. Fraser Wright, Ph.D., Michael C. Milone, M.D., Ph.D., Bruce L. Levine, Ph.D., and Carl H. June, M.D.


- Two children with relapsed and refractory pre–B-cell ALL
- CAR-T cells expanded to a level that was more than 1000 times as high as the initial engraftment level
- Eight grade 3 or 4 adverse events were noted. The cytokinerelease syndrome and B-cell aplasia developed in both patients
- Complete remission was observed in both patients

CARs hitting the headlines

Complex production

BBTS 2019

#BBTS20

SHTA Human Tissue Authority The regulator for human tissue and organs

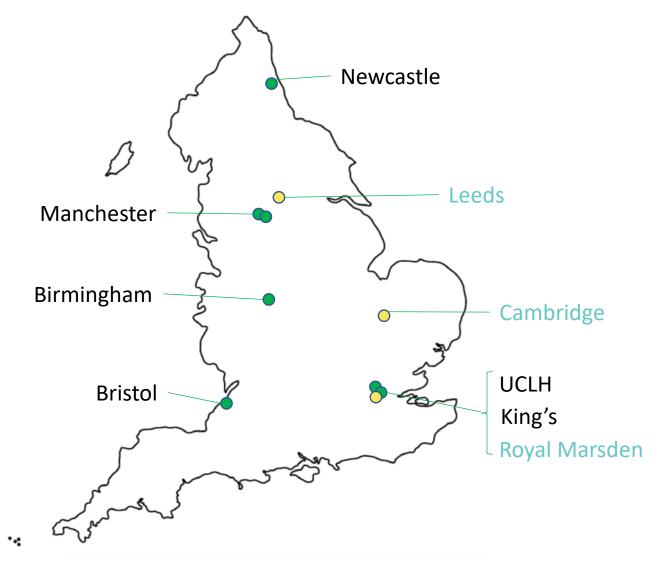
Stem Cell Transplant teams

Medicines & Healthcare products **Regulatory Agency**

Pharmaceutical companies

British Blood Transfusion Society

-25


How to name a CAR

Prefix Random	Infix1 Manipulation	Infix2 Cell type				Suffix -cel
To ensure a distinctive name	To specify manipulation the cells have undergone e.g. -gen- (transduced, genetic modification) -fus- (fusion to a cell)	To identify -den- -isle- -mio(b)- -co(n)- -fi(b)- -ker(a)- -end(o)- -ep(a)- -mestro- -ret-	the primary cell type denritic cells islet cells Myoblasts chondrocytes fibroblasts keratinocytes endothelial cells hepatocytes mesenchymal stromal cells retinal epithelial cells	e e.g. -ren- -pla(c)- -ur- -ova- -tesi- -cor- -leu- -tem- -deftim-	renal tubular cells placenta cells urothelial cells ovary cells testis cells umbilical cord cells lymphocytes stem cells differentiated stem cells tumour cells	To name all cellular ATMP

NHS England CAR-T centres

British Blood Transfusion Societ

Current Licenced/Commissioned products

Search news

News

You can use the filters to show only news items that match your interests

Keyword

#BB.

Topic Select topic Date range From dd / mm / yyyy

To

dd / mm / yyyy

NHS England announces groundbreaking new personalised therapy for children with cancer

5 September 2018

Cancer Children and young people Medicine

NHS patients to benefit from Europe's first full access deal on breakthrough CAR-T therapy.

NHS England chief executive Simon Stevens has announced today that children and young people in England will receive a groundbreaking cancer treatment, the first in what is expected to be a rapidly expanding class of personalised cancer therapies available on the NHS.

NHS England's commercial deal with the manufacturer Novartis is the first in Europe, and comes less than 10 days after the treatment was granted its European marketing authorisation. It represents one of the fastest funding approvals in the 70 year history of the NHS.

NICE rejects Gilead's CAR-T, immediately after EU approval

Richard Staines

August 28, 2018

Novartis and Gilead's CAR-T therapies have been approved in Europe – and the UK's NICE immediately slapped down the latter, saying it is too expensive for regular NHS use in England and Wales.

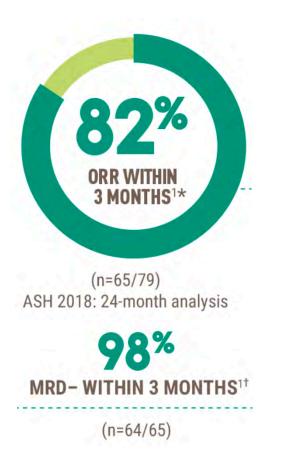
Novartis' CAR-T, Kymriah (tisagenlecleucel) has not yet been reviewed by NICE's committees, as the cost-effectiveness body received the manufacturer's dossier much later.

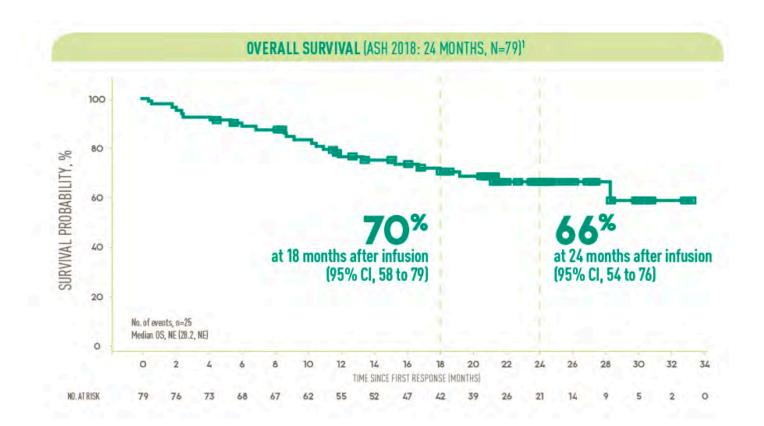
But if NICE's decision on Gilead's CAR-T (chimeric antigen receptor T-cell) therapy, Yescarta (axicabtagene ciloleucel) is anything to go by, <u>Novartis</u> may also have difficulties securing market access on England's NHS. Magazine Web Exclusives News Competitions Appointments Jobs Business

online

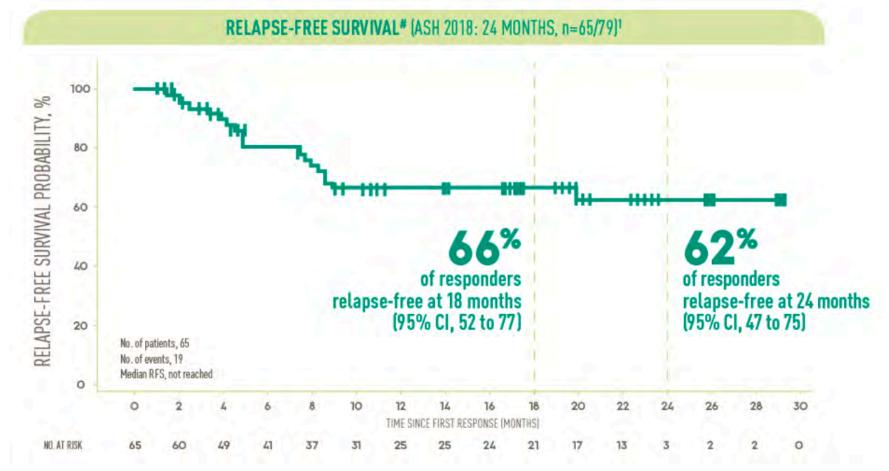
Free news subscriptions Free RSS feeds

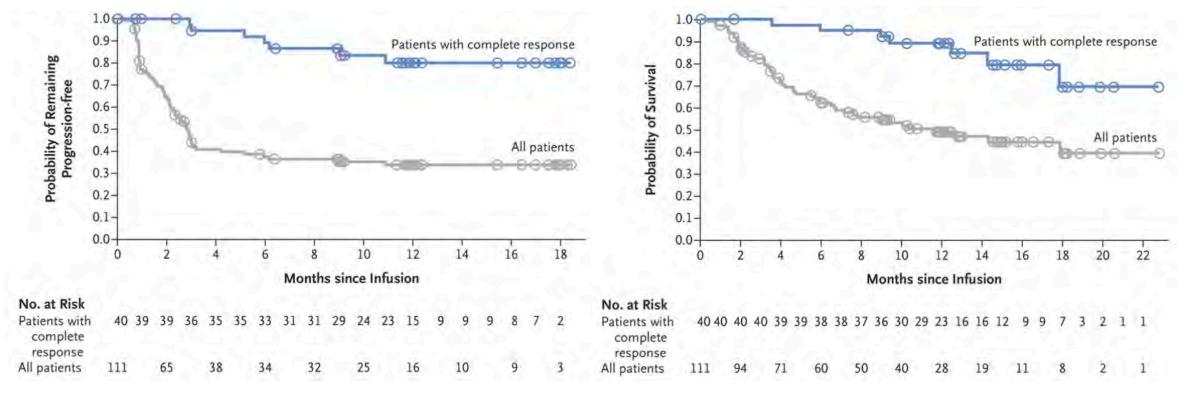
PharmaTimes

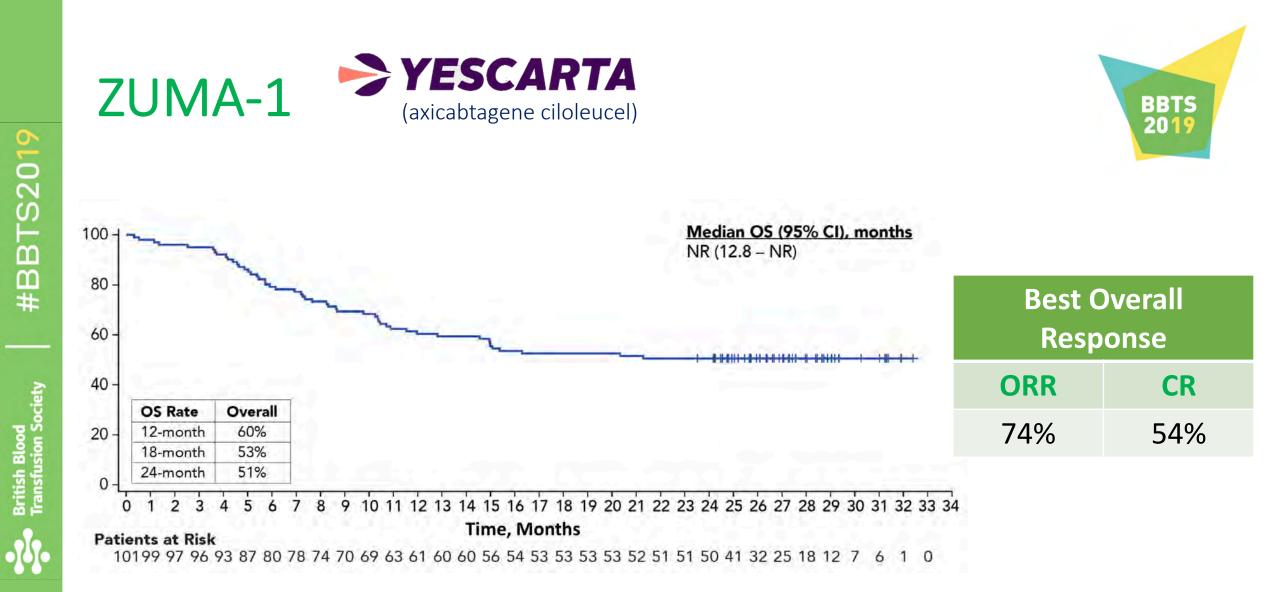

Gilead strikes deal with NHS England on Yescarta access


8th October 2018

#BBTS2019

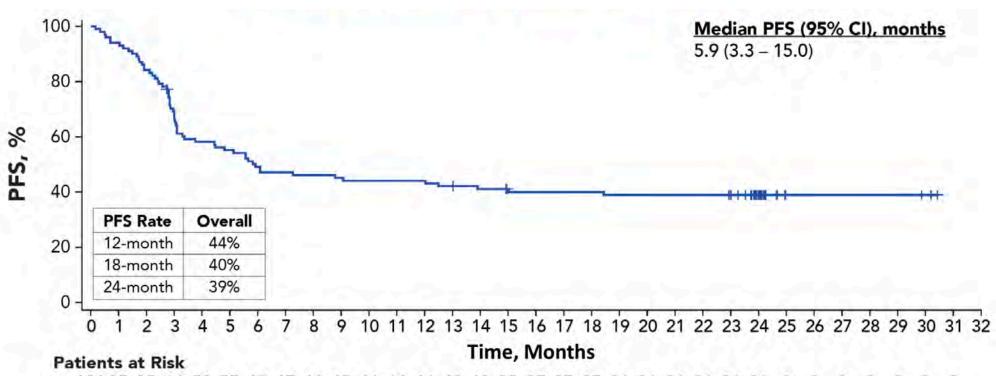



#BBTS2019

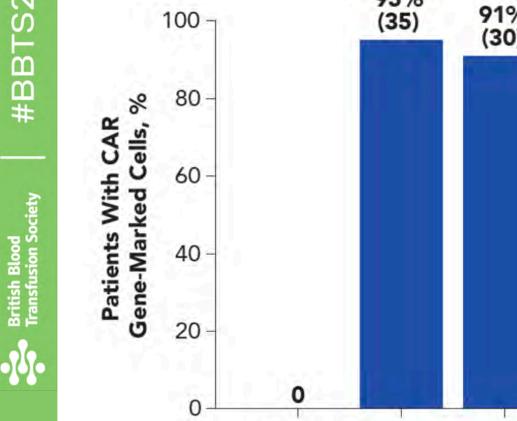


OS

PFS



N Engl J Med 2019; 380:45-56



101 95 85 66 58 55 49 47 46 45 44 44 44 42 40 38 37 37 37 36 36 36 36 34 21 3 3 3 3 3 2 0

ZUMA-1

#BBTS2019

Month

The growing trial landscape

Dual Specific	– ALL, Myeloma
BCMA	– Myeloma

- Myeloma
- AML & Myeloma **CD44v6**
 - Neuroblastoma

Allo CAR

GD2

NIH U.S. National Library of Medicine ClinicalTrials.gov		Find Studies -	About Studies -	
Home > Search Results				
Modify Search Start Ove	r			
		Miller net commente de		

417 Studies found for: CAR-T

959 Clinical Responses and Pharmacokinetics of MCARH171, a Human-Derived BCMA Targeted CAR T Cell Therapy in R/R MM: Final Results of a Phase I Clinical Trial

PET Response post MCARH171

1		
1000	MCARH171 (Dose level 3: 450	6.20
	Million cells)	177
• 1		28
		11

960 Low Dose of Human scFv-Derived BCMA-Targeted CAR-T Cell Achieved Fast Response and High CR in Patients with R/R MM

Pt # 8 : Male, 65yrs. MM(λ type). Achieved CR at week 4.

Day 1 after CT053 treatment

Day 5 after CT053 treatment

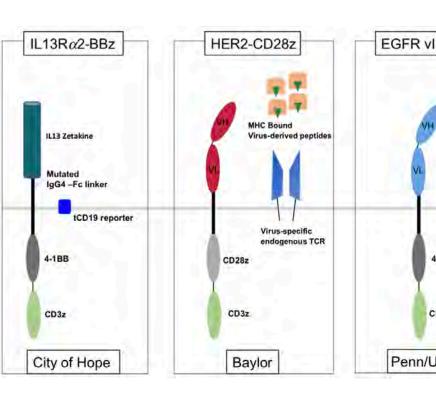
Day 6 after CT053 treatment

ASH 2018

BBTS 2019

BCMA CAR T-cell Therapies for Myeloma

BBTS 2019


	Anti-BCMA CAR ¹ NCT02215967	Bb2121 ² NCT02658929	CART-BCMA ³ NCT02546167	LCAR-B38M ⁴ NCT03090659
Group/company	NIH	Bluebird/Celgene	University of Pennsylvania/ Novartis	Nanjing Legend Biotech
Patients	16 patients at 9x10 ⁶ /kg dose level	22 (>150 x 10 ⁶ cells)	21 (3 cohorts) : 9 (10-500 x 10 ⁶ . No Cyt) 5 (10–50 x 10 ⁶ · Cyt) 7 (5 (100–500 x 10 ⁶ · Cyt)	57
BCMA expression required?	Yes	Yes; ≥ 50% BCMA expression	No	Yes
Median prior lines of therapy	7	7	7 (3–11)	3
Reported efficacy	ORR 14/16 (81%) 11/14 (79%) MRD- EFS: 7.2 months	86.4% ≥VGPR (50% sCR/CR) PFS: 11.8 months	#1: 67% (1 sCR, 1VGPR) #2: (40%) 1 PR, 1 MR both PD #3: (83%) 1 CR, 3 PR, 1 MR	ORR: 88% CR: 74% MRD-: 93% of CR PFS:15m
nis slide is provided for ease of vie CMA, B-cell maturation antigen; C artial response	CRS all grades:100%, 37%G3-4	CRS all grades: 63% 2 events of CRS grade ≥3 resolved within 24 hours	CRS: 17 pts (grade 3: 32%) Neurotoxicity: 3 (2 grade 4) 1 death – PD candidaemia	Transient CRS (5,7% G3) No neurotoxicity

1. Ali A, et al. Presented at ASH 2015, Abstract LBA 1; 2. Raje NS, et al. JCO. 2018;36:(suppl; abstr 8007); 3. Cohen AD, et al. Blood 2017;130:505.; 4. Zhang W, et al. Presented at EHA 2017. Abstract S103.

Abstracts ASH 2018: 488, 955-7, 959, 960, 1009, 1011-14

CAR-T in non-Haem malignancy

	Target TAA	Solid tumors expressing target TAA	Type of CAR	Clinical trials*	
	CD44v6	(Metastasized) colon cancer, soft tissue sarcorna (STS), possible marker for many metastasizing tumors (12, 13)	28; CAR-CIK/ HSV-TK suicide gene	Preclinical	
/III-BBz	CAIX (carbonic anhydrase IX)	Metastatic clear cell renal cell carcinoma (ccRCC) (14, 15)	CD4 _{TM} -y	Study stopped	
	CEA (carcinoembryonic antigen)	Ovarian, gastrointestinal, colorectal, hepatocellular carcinoma (HCC) (16–18)	CD3;	NCT02959151 NCT02850538 NCT02349724 NCT03267173	
4	CD133	Ovarian, glioblastoma (GBM), HCC (17–19)	BB;	NCT02541370 NCT03423992	
	c-Met (Hepatocyte growth factor receptor)	Breast (50%), melanoma, HCC (20)	BB; mRNA c-Met/PDL-1	NCT01837602 NCT03060356 NCT03672305	
	EGFR (epidermal growth factor receptor)	NSCLC, GBM, sarcoma, malignant pleural mesothelioma (MPM) (79.2%), retinoblastoma, glioma, medulloblastoma, osteosarcoma, Ewing sarcoma (21–23)	28/BB; α-GTLA-4/PD-1 IL12 BB;/EGFR806/ tEGFR suicide gene	NCT03152435 NCT03182816 NCT03542799 NCT03638167 NCT03618381	
4-18B CD3z	EGFRvIII (type III variant epidermal growth factor receptor)	GBM (24–67%), glioma, colorectal, sarcoma, pancreatic	– IEGFR suicide gene – – – –	NCT03283631 NCT02844062 NCT01454596 NCT03267173 NCT03726515	
CDS2	Section 2.	(16, 24)	-	NCT03423992	
UCSF	Epcam (epithelial cell adhesion molecule)	HCC, lung, ovarian, colorectal, breast, gastric, stomach, esophogeal, pancreatic, liver, prostate, gynecological cancers, nasopharyngeal carcinoma	- 285	NCT02915445 NCT03563326 NCT03013712 NCT02729493	
		(16, 25)	12111	NCT02725125	
	EphA2 (Erythropoetin producing hepatocellular carcinoma A2)	GBM, glioma (26, 27)	201	NCT03423992	
	Fetal acetylcholine receptor	Osteosarcoma, rhabdomyosarcoma (28)	CD3¢	Preclinical	
	$FR\alpha$ (folate receptor alpha)	Ovarian (90%), urothelial bladder carcinoma	4SCAR (4th gen)	NCT03185468	

BBTS 2019

Phase

1/11

1/11 lb.

> Early I I/IIa

Early I Early I

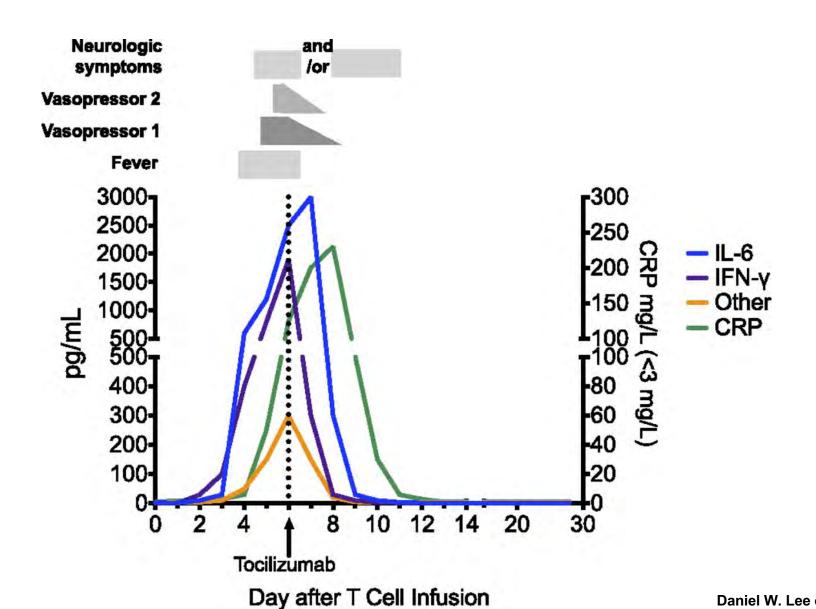
Early I

1/11 1/11

1/11 Early I

1/11 1/11

#BBTS2019



Toxicity

BBTS 2019

- Cytokine Release Syndrome (CRS)
- Neurological (ICANS)
- B cell aplasia
- Tumour escape

CRS

British Blood Transfusion Society

Daniel W. Lee et al. Blood 2014;124:188-195

Iblood

BBTS 2019

#BBTS2019

British Blood Transfusion Society

- Treatments utilizing the power of the immune system are producing complete responses in patients with refractory disease
- CAR-T cells are complex 'living drugs'
- Toxic, high cost therapy but NHS has rapidly embraced them

