

HEMANEXT ONE Red Blood Cell Processing System

Neil Beckman – Hemanext Technical Director

Hemanext[®]

Hemanext Introduction

Hema**next**®

Mission: Hemanext is committing its resources to the continuing effort of the transfusion medicine community to **save lives and improve patient outcomes**. Our distinctive focus is on innovations in systems enabling blood collection, processing, storage and transfusion that will promote radical improvement in the quality, safety, efficacy and cost of transfusion therapies

- + Started in 2008
- + ~35 Employees
- + Office in Lexington, MA. Manufacturing Facility in Avon, MA
- + Raised ~\$50M from the NIH and private investors
- + Management team includes senior life sciences executives

Scientific Advisors

- + Paul M. Ness, MD
 - Johns Hopkins University School of Medicine.
- + Larry Dumont, MBA, PhD
 - Blood Systems Research Institute.
- + Jose Cancelas, MD, PhD
 - Hoxworth Blood Center at University of Cincinnati
- + Steven Spitalnik, MD
 - Columbia University
- + Christopher Silliman, MD, PhD
 - Bonfils Blood Center Research Department
- + Ralph Vassallo, MD, FACP
 - Blood Systems, Inc., Scottsdale, AZ.
- + Philip C. Spinella, MD
 - Washington University School of Medicine
- + Angelo D'Alessandro, PhD
 - University of Colorado
- + Biree Andemariam, MD
 - UConn Health

The Hemanext[®] One Blood Processing and Storage System

Oxygen Reduction Bag (ORB)

Hemanext Storage Bag (HSB)

The Role of %SO₂ in Red Cell Quality

Hema**next**®

Patient adverse events are associated with degradation in storage

- + RBCs degrade across the 5/6 week permitted storage period
- + Degradation varies by donor
- + Degradation is %SO₂ dose dependent
- + Oxygen leaches through PVC container
- + Storage degradation increases risk in vulnerable patients especially after large volumes of blood
 - Sickle cell disease
 - Thalassemia
 - Trauma or other massive bleeding etiologies
- + Red cell degradation is O₂ dose dependent

Wang et al, Transfusion. 2012 Jun; 52(6): 1537-2995 Reisz et al, Blood 2016 128:32-42 Wide Variation in Saturated Oxygen Levels at time of Storage

Research and Blood Center %SO₂ distributions Day 0

Ν Mean SD 45.9% 17.5% Research units¹ O Histogram for "SO2 corrected" 47.0% 21.0% No. of obs. **RIBC** units² 0 To 5 5 To 10 To 15 To 20 To 25 To 30 To 35 To 40 To 45 To 50 To 55 To 60 To 65 To 70 To 75 To 80 To 85 To 90 To 95 and over Histogram 59.7% 18.2% Sanquin units³ ¹ Yoshida et al, Blood Transfusion, 15(2), 172-181 5 To 10 To 15 To 20 To 25 To 30 To 35 To 40 To 45 To 50 To 55 To 60 To 65 To 70 To 75 To 80 To 85 To 90 To 95 To ² Nemkov et al., Haematologica, 103(2), 361-372 and over ³ De Korte, et al., Vox Sanguinis (2018) 113 (Suppl.1), 5-347

Count

RBC Storage Lesion: Causes and Consequences

Tatsuro Yoshida, Michel Prudent, Angelo D'Alessandro. Red blood cell storage lesion: causes and potential clinical consequences. Blood Transfus 2019; 17: 27-52

Causes and Consequences: Oxidative Damage Hemanext®

Tatsuro Yoshida, Michel Prudent, Angelo D'Alessandro. Red blood cell storage lesion: causes and potential clinical consequences. Blood Transfus 2019; 17: 27-52

Hemanext Controls Oxygen During Storage

RESPR22: Additive Solution Study at Hema Quebec

%SO₂ optimisation minimises oxidative damage and promotes healthy metabolism

Hema**next**®

Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells. Reisz JA, Wither MJ, Dzieciatkowska M, Nemkov T, Issaian A, Yoshida T, Dunham AJ, Hill RC, Hansen KC, D'Alessandro A. Blood. 2016 Sep 22; 128(12):e32-42.

Microvascular Analyser

MVA Video

Copyright © 2019 New Health Sciences, Inc. | Confidential and Proprietary Information of New Health Sciences, Inc.

- Pool and split design
- 2,3 DPG in both Hemanext groups was higher than control throughout storage
- PAGGSM-Hemanext was significantly higher than SAGM-Hemanext
- PAGGSM-Hemanext group 2,3 DPG remained at or above physiologic levels throughout 21 days of storage.

RESPR22: Additive Solution Study at Hema Quebec

CE Mark Study

- Study at Hema-Quebec to support an application to CE mark the Hemanext RBC Processing System
- Evaluate CPD/PAGGSM leucocyte-reduced RBCs stored hypoxically for 49
 day using the Hemanext RBC Processing System

Haemoglobin recovery

Parameter	All Donors		
	n	32	
Holdup Volume in ORB + Tubing (ml)	Mean (Std Dev)	4.97 (3.58)	
	Min - Max	0.00 - 11.40	
Holdup Volume in ORB + Tubing (%)	Mean (Std Dev)	1.87 (1.30)	
	Min - Max	0.00 - 4.23	
Total Hemoglobin in HSB (g)	Mean (Std Dev)	50.49 (6.27)	
	Min - Max	41.33 - 65.25	

CLIN-0002: CE Mark study at Hema Quebec

2,3 DPG (n=32)

2,3 DPG (μmol/gHb)					
Testing Day	Mean	SD	Min	Max	
1-pre	8.2	1.7	5.4	11.2	
1	10.5	1.8	6.8	14.6	
21	14.5	2.6	6.4	18.1	
42	1.5	0.8	0.4	3.1	
49	0.7	0.4	0.0	1.8	

CLIN-0002: CE Mark study at Hema Quebec

ATP (n=32)

ATP (μmol/gHb)					
Testing Day	Mean	SD	Min	Max	
1-pre	3.6	0.5	2.9	4.6	
1	4.1	0.5	3.1	5.5	
21	4.3	0.5	3.3	5.3	
42	3.2	0.5	2.4	4.8	
49	2.6	0.4	1.8	3.8	

Hypoxic storage maintains ATP levels and increases DPG levels

Red blood cell metabolic responses during blood bank storage under mild and acute hypoxia. D'Alessandro A, Travis N, Hill RC. Vox Sanguinis. 2016 January; 111(S1):7-305.

CLIN-0002: CE Mark study at Hema Quebec

Hemanext Blood Quality Study Results Preliminary Data – not reviewed by FDA

Study Arm	RBC Yield Post- Hemanext > 85%	Day 42 Hemolysis < 1%	Dual label 24- hour recovery > 75%
Hemanext < 12 hours *	n=95 89.66% (±3.42)	n=92 0.283% (±0.168)	n=19 89.34%* * (±5.72)
Control/AS3 < 8 hours	N/A	n=94 0.289% (±0.154)	n=21 85.47% (±5.82)

- 89.34% recovery is the highest reported for a commercially viable red cell
- * p < 0.05, * 12 hours vs. 8 hours of processing time

CLIN-0001: Multicenter US FDA trial

Resuscitation Timeline – Rat Model

Developed pre-clinical model to measure differences in RBC quality

- + Oxygen delivery & vascular management resuscitation of blood pressure, lactate reduction
- + Marker of blood integrity post-transfusion intravascular hemolysis
- + Markers of organ inflammation kidneys, liver, lungs, spleen

Determined relationship between human and rat blood

- + Rat blood behaves similarly to human blood under Hemanext hypoxic conditions
- + Selected 3 week storage duration based on 24-hour recoveries
 - + Conventional RBCs 80% 24-hour recovery
 - + Hypoxic RBCs 83% 24-hour recovery

Using 3 week old rat blood for resuscitation

Transfusion of Anaerobically or Conventionally Stored Blood After Hemorrhagic Shock. Shock. 2019 Aug 30. doi: 10.1097/SHK.00000000001386. [Epub ahead of print]. Williams AT, Jani VP, Nemkov T, Lucas A, Yoshida T, Dunham A, Alessandro A, Cabrales P.

Reduction in blood volume needed to achieve Hemanext[®] resuscitation after hemorrhagic shock with hypoxically stored blood

Hypoxic storage dramatically improved resuscitation efficacy and reduced the volume capable of achieving resuscitation.

Reduction in blood volume needed to achieve Hemanext[®] resuscitation after hemorrhagic shock with hypoxically stored blood

Hypoxic storage dramatically improved resuscitation efficacy and reduced the volume capable of achieving resuscitation.

Pre-clinical Testing of Hemanext RBC

Test	Method
Neutrophil Priming Test	Neutrophil activation will be performed with RBC and supernatants from Hemanext products. Completed – no evidence of neutrophil activation
Growth and proliferation of facultative and strict anaerobic bacteria	Spike bacteria at different concentrations into leukocyte reduced red cell concentrates. Half of the unit will be processed with Hemanext RBC Processing System and then stored at 4C for 42 days – Completed – no evidence of increased anaerobic bacterial growth. Will replicate for a manuscript.
Rate of sickling of sickle red blood cells	Incubate sickle and Hemanext RBC. The change in sickling rate will be measured after mixing with Hemanext RBC – Completed- no evidence of increased sickling at very extreme oxygen and time variables. Will replicate for a manuscript.
Endothelial Adherence	Incubate Hemanext RBC with HUVEC at 37°C under static condition and varying shear stresses – Completed. Hemanext equivalent or better. Manuscript in process.
WBC viability and RBC quality post- gamma irradiation	Demonstrate leucocyte inactivation and maintenance of red cell quality post-gamma irradiation - Hemanext equivalent or better. Completed
Hemolytic Potential	Subject Hemanext RBC to varying shear stresses measuring hemolysis and red cell fragmentation – In process
Neoantigenicity and T-Cell activation tests	Measure expression of surface RBC antigens before and after Hemanext RBC Process – In process

Hema**next**®

Extensive in vitro characterization has not revealed any safety risks

The Hemanext[®] One Blood Processing and Storage System

Oxygen Reduction Bag (ORB)

Hemanext Storage Bag (HSB) The Hemanext[®] One Blood Processing and Storage System is *totally compatible* with and *fully integrates* with all current processing and storage systems worldwide.

After centrifugation, RBCs are placed in a conventional storage bag (LD RBC).

RBCs are then transferred to a proprietary double layered bag **(ORB)**, which then **removes** up to 95% of the oxygen from the hemoglobin.

Upon completion of the oxygen transfer, (currently a three hour period), RBCs are transferred to a final proprietary storage bag **(HSB)**, which ensures

Copyright © 2019 New Health Sciences, Inc. | Confidential and Proprietary Information of New Health Sciences, Inc. |

Hemanext Processing

- 1. Remove from packaging
- 2. Transfer LR RBC to the Oxygen Reduction Bag
 - + Using a sterile welding connector (SCD), sterile dock the CPD/PAGGSM, LR RBC bag to the LR RBC blood line.
 - + At room temperature (20-26° C), hang the LR RBC bag at a head height of no greater than 180 cm (72 inches.)
 - + Separate the LR RBC bag and discard accordingly

Hemanext Processing

3. Agitate in the ORB at room temperature

- + flatbed platelet agitator shelf at room temperature (20-26° C)
- No more than two Hemanext RBC Processing Systems per shelf with the ORB parallel to the axis of motion and the HSB on top of the ORB
- + Ensure that the two Hemanext RBC Processing Systems do not overlap
- + If flatbed platelet agitator shelf is less than 14.25 x 30 x 1 in (36 x 76 x 2.5 cm), place only one Hemanext RBC Processing System

Hemanext Processing

- 4. Transfer to the Hemanext Storage Bag
 - + Separate the ORB and dispose accordingly.
 - + Segment the HSB bloodline as needed.
 - + Place the HSB into cold storage at1 to 6° C for up to 42 days after collection.
 - Prior to transfusion, confirm that the O2 indicator in the HSB is not purple or bluishgray.

HSB
Hemanext
Storage Bag
N
14 14
Carpelan BILO
Same Pro-
leroner.
in the second

Hemanext Processing

Processing Video

Hemanext Timeline

Plans for Improving Patient Outcomes

	2019	2020	2021	2022	2023	2024
	PHASE 1		PHASE 2		PHASE 3	
nical cus			Hematological Disorders: Oncology /Thalassemia/ Sickle Cell			
Clir Fo			High Volume Trai Complex Surgery/ T	nsfusions: rauma/ Burn	Other High Volu	me
	SCD	+	Reduced transfusion volum	Ie		
cts	Thalassemia	+	Increased transfusion interv	val		
pa		+	Reduced iron overload			
ш		+	Sustained Hb levels			
and		+	Reduced sequelae			
nts	Trauma + Burns + Surgeries +	Reduced transfusion volum	Ie			
tie		+	Improved oxygen delivery			
Ра		+	Reduced infections			
		+	Reduced length of stay			

Magnitude of Benefit from Improved RBC Quality

Recent Clinical Observations^{1,2,3}

- + Abdominal surgery¹
 - + RBC age drives extent of Hb loss (18-61% losses) of transfused Hb
- + SCD patients²
 - + Variability of 75.6 148.5 days RBC survival after transfusion
- + MDS patients³
 - + Loss of 29 52% of transfused red cells <24 hr post-transfusion
 - + Hemoglobin loss dependent on inflammatory state of the patient

Post-transfusion variability indicates the magnitude of the opportunity

1 Hunsicker Transfusion, 58(8), 1870-1880, 2018 2 Kim et al., Trans. Aph. Sci, 57, 46-49, 2018 3 Wendelbo et al., Vox Sanguinis, 113, 657–668, 2018

Regulatory clearance activities in progress

- ✓ Successful completion of CE Mark and FDA clinical studies
- ✓ FDA confirms clinical study meets submission requirements
- ✓ FDA confirms De Novo 510(k) clearance pathway based on two communications

2019:

- Submit (Sept '19) CE Mark
- File for FDA Clearance (Dec '19)

2020

- CE Mark approval
- FDA Clearance (June '20)
- US Launch (June '20)

"The response to the De Novo pre-submission request was the best I can recall receiving in 22 years dealing with FDA. I am typically realistic, even pessimistic, but I truly believe that FDA is excited about the potential of this product to improve the quality of blood."

Susan Finneran, President, Regulatory Compliance Experts, Inc.

Thank you

The team at Hemanext and all our collaborators Mike Dioguardi (Director, Research and Clinical Operations) Andy Dunham (Chief Scientific Officer) Bob Haime (Vice President, Commercial Operations)