

Blood Component Quality Monitoring Scheme

Paul McTaggart
Data Manager
UK NEQAS Haematology

UK NEQAS Haematology Participants' Manual

- Purpose
 - Supplement to the Full Blood Count Scheme
 - Designed for organisations that produce therapeutic blood products
- Analytes
 - Hb, Hct, PLT
- Specimens distributed
 - 2 Red Cells, 2 Platelet concentrate
- 4 distributions per year

Blood Component Quality Monitoring (CM) Initial meeting

- ▶ 2005 Meeting between NBS and UK NEQAS (H)
 - NBS laboratories registered in UK NEQAS (H) FBC
 - FBC Scheme designed for Hospital laboratories
 - Haemoglobin and platelet counts at decision points for clinical use
 - NBS labs measuring at levels in Blood Components
 - Can exceed stated linearity of instrument

Blood Component Quality Monitoring (CM) Pilot Scheme

- 2005 2006 Pilot Scheme developed
 - Material developed
 - · 'Fresh' Platelet pools & plasma reduced blood
 - Red Cells used for Haemoglobin
 - Concentration adjusted by centrifigation
 - Platelet pools concentrated by centrifigation
 - Counts adjusted by adding back supernatent
 - Platelets partially fixed.

- Specimens distributed
 - 2 Red Cells (Haemoglobin)
 - 2 Platelets
- Specimens analysed on same day
- Results returned to UK NEQAS (H)

Blood Component Quality Monitoring (CM) First pilot exercise

- ▶ 16 laboratories
 - 7 monitored instruments in two modes
 - 24 instruments
- Instrument identified by PRN in FB Scheme
- Mixture of instruments
 - Abbott, Beckman Coulter, Horiba, Siemens, Sysmex
- All methods statistics

- Statistical analysis
 - Non-parametric statistics
 - Median as target
- Outliers agreed with NBS
 - Median ± 2% Haemoglobin
 - Median ± 10% Platelets

Reference

S. M. Lewis 2001 Quality Assurance. In: Dacie and Lewis Practical Haematology 9th edition, SM Lewis, BJ Bain and I Bates (eds), Churchill Livingstone.

- 2007 Biomedical Excellence for Safer Transfusion (BEST) laboratories invited to take part in pilots
- 2008 Haematocrit added to tests
- 2009 Review meeting
 - NHSBT & UK NEQAS (H)
 - Performance reasonable
 - Immunoplatelet method for platelets in plasma
 - Work towards full scheme status

- 2013 Proposed Scoring
 - Data from 2010 2013
- Deviation Index
 - Chosen coefficient of variation (CCV)
 - Survey Standard Deviation (SD)

Scoring 2

Deviation Index

- Z-score
- ISO13528

$$z - score = \frac{(result-target)}{SD \ or \ CCV}$$

- Consensus target (median)
- SD = estimated SD
- CCV = chosen coefficient of variation
- Discussed with Scheme Statistician
 - Use SD

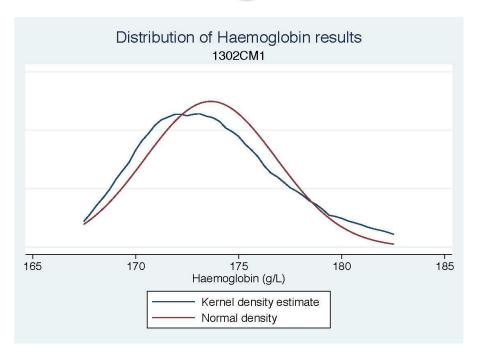
Interpretation of z-score

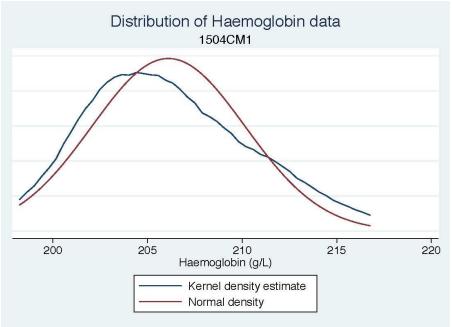
From ISO13528

$$|z| \le 2.0$$
 acceptable

$$2.0 \le |z| \le 3.0$$
 warning signal

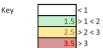
 $|z| \ge 3.0$ unacceptable (action signal)




Scoring

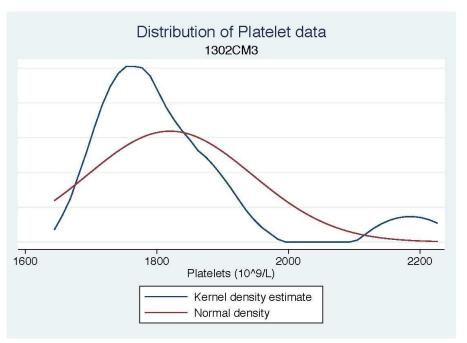
- Scoring workup using data from 2013 2015
 - Scoring modelled on FBC Scheme
 - Absolute DI value taken
 - DI > 3.5 truncated to 3.5
 - Sum of last six DI values
 - Multiply by scaling constant (6)
 - Score
 - Score ≥ 100 unsatisfactory performance

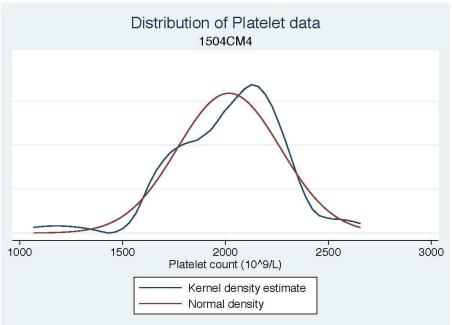
Haemoglobin Data



UK Haemoglobin data

	Absolute & Truncated DI																					
Instrument	1302CM1	1302CM2	1303CM1	1303CM2	1304CM1	1304CM2	1401CM1	1401CM2	1402CM1	1402CM2	1403CM1	1403CM2	1404CM1	1404CM2	1501CM1	1501CM2	1502CM1	1502CM2	1503CM1	1503CM2	1504CM1	1504CM2
A	0.33725	0.5396	0	0	1.199111	0.469217	2.248333	0.852	2.248333	0.852	2.248333	0.852	0.65627	1.01175	1.0792	0.930345	1.055739	0.726385	1.01175	0.75293	0.33725	0.5396
В	1.349	0.8094	0	0	0.899333	0.469217	2.248333	1.42	2.248333	1.42	2.248333	1.42	0.947946	0.6745			1.290348	0.933923	0	0.125488	1.01175	0.8094
С	0.6745	0.2698	0.142	0.33725	0.899333	0	0.899333	0.568	0.899333	0.568	0.899333	0.568	0.364595	0.505875			0.82113	0.311308	0.843125	0.501953	0.505875	0.5396
D	0	0.5396	0.426	0.33725	0.899333	0.938435	0.449667	0.852	0.449667	0.852	0.449667	0.852	0.65627	0.33725			0.586522	0.726385	1.349	0.878419	0.6745	1.0792
E	1.68625	1.349	0.568	1.68625	0.599556	0.703826	0.449667	0.284	0.449667	0.284	0.449667	0.284	0.510432	0.505875	0	0	0.351913	0.518846	1.01175	0.75293	0.505875	1.349
F	1.01175	0.8094	0.994	1.68625	0.599556	0.469217	0	0.568	0	0.568	0	0.568	0.364595	0.505875	0	0	1.290348	0.726385	1.180375	0.627442	0.6745	0.5396
G	1.01175	0.8094	0.142	0.6745		0.703826	0	0.284	0	0.284	0	0.284	0.218757		0	0	1.055739	0.518846	1.349	0.75293	0.843125	$\overline{}$
Н	1.01175	1.0792	1.136	1.68625	0.599556	0.703826			1.798667	1.42	1.798667	1.42	0.364595	0.505875	0	0	0.351913	0.518846		1.380372	0.505875	0.2698
I	0.6745	0.5396	0.284		0.299778	2.111478	1.798667		1.798667	0.568	1.798667		0.072919	0.6745	0.21584			0.726385	0.33725	0.250977	0	0.2698
J	0.33725	0	0.142	0.33725	0	0.469217	0.449667	0.284	0.449667		0.449667	0.284	0.072919	0.33725		0.558207			0.33725	0.627442	0	0
K	0.33725	1.0792	3.5	0.6745		2.111478	0	0	0		0	_	1.239622	0.505875	1.0792	0.930345	1.290348	1.349	0.168625	0.75293	1.68625	2.9678
L	1.68625	1.6188	0.568				0	0.284	0	0.284	0	0.284	0.072919									\perp
М	0.33725	0	0		0.599556	_	0.449667	0	0.449667	0	0.449667		0.072919				0.351913			0.125488	0	0
N	0.33725	0	0.284	_	0.599556	0.703826			0.449667		0.449667		0.364595	0.505875	0.43168		0.586522	0.311308	1.01175	0.376465	0	0
0	0.6745	1.349	0.71		0.599556		1.349	1.704	1.349	1.704	1.349	1.704				0.930345						\vdash
Р	1.349	1.0792	0.568	1.68625	0.899333	0.469217			1.798667	0.852		0.852			0.43168	0.558207						\vdash
Q	0	0.5396	0.852	0.6745	0.899333		0.899333	1.136			0.899333		0.802108	0.843125			1.290348	1.349	1.349	0.878419	0.6745	
R	0.33725	0.2698	0.71	1.01175	1.199111	0.469217	0.449667	0.284	0.449667	0.284	0.449667	0.284							1.349	0.75293	0.6745	
5																	0.82113	0.311308			0.6745	
K	0.6745			0.6745	0.500556	0.000405	0.000222	4.000	0.000000	4.000	0.000000	4.000	0.240757	0.22725	0.64750	0.550207	0.254042	0.244200		0.076465	0.33725	0.5396
<u>U</u>	0.6745	0	0	0.6745	0.599556	0.938435	0.899333	1.988	0.899333	1.988	0.899333	1.988	0.218757	0.33725	0.64/52	0.558207	0.351913	0.311308	0	0.376465	0.33725	0.5396
V	0.6745	0.2600	4 270	2.0225		0.020425	2 240222	0.052	2 240222	0.052	2 240222	0.053	0.072010	4 400275	2.02476	1 100552	0.117204	0.510046	4 400075	0.627442	1.68625	
VV	0.6745	0.2698	1.278	2.0235	0	0.938435	2.248333	0.852	2.248333	0.852	2.248333	0.852	0.072919	1.180375	3.02176	1.488552	0.117304	0.518846	1.180375	0.627442	1.349	1.349
X	0.6745	0.8094	1 42	2.0225	0.500556	1 407052	1 240	2.550	1 240	2.550	1 240	2.550										\vdash
Υ			1.42	2.0235	0.599556	1.407652	1.349	2.556	1.349	2.556	1.349	2.556							<u> </u>			ш




UK Haemoglobin data

	1												
			Scores										
Instrument	1304CM	1401CM	1402CM	1403CM	1404CM	1501CM	1502CM	1503CM	1504CM				
Α	15.27107	28.61197	47.21397	55.806	47.21212	40.66739	32.75813	33.33809	26.54192				
В	21.1617	30.2213	52.2313	66.03	53.75468	53.75468	45.0903	23.83323	25.02546				
С	13.9373	17.0755	23.004	26.412	22.83082	22.83082	20.82145	20.08792	21.13795				
D	18.84371	23.41611	26.64661	23.43	21.58112	21.58112	21.64856	27.20307	31.76415				
E	39.55729	25.74779	16.62429	13.206	14.90184	10.49984	11.3224	15.81264	26.94189				
F	33.42104	25.90214	13.22864	10.224	12.03882	8.630818	17.32321	22.9473	30.2319				
G	21.84752	12.62462	9.429623	5.112	6.744041	5.040041	12.78355	22.05909	33.59304				
Н	37.29949	44.06579	46.44429	57.936	43.84682	24.53482	10.44737	15.53029	20.18434				
I	27.50314	34.41854	42.86754	42.6	32.88451	22.21238	14.48217	13.52701	11.61795				
J	7.714304	10.0928	11.6193	13.206	11.26501	12.80233	13.62489	16.95203	11.01271				
K	57.00657	48.50787	23.46087	0	10.47298	22.53025	38.36634	33.42269	49.28972				
L	30.26679	12.14049	8.412986	5.112	4.857264	4.857264	4.857264	4.857264	4.857264				
M	5.620833	6.295333	8.993333	8.094	8.868764	10.99367	11.02976	11.34518	6.522274				
N	11.54779	17.33429	23.44029	23.43	20.84282	20.08855	17.66553	20.772	13.71627				
0	35.13059	41.30759	47.27159	54.954	54.954	48.69327	48.69327	48.69327	48.69327				
Р	36.306	37.6408	40.0193	47.712	47.712	37.74732	37.74732	37.74732	37.74732				
Q	24.83086	33.80526	36.85826	36.636	34.2954	34.2954	37.91949	39.072	38.104				
R	23.98277	24.74247	18.81397	13.206	13.206	13.206	13.206	21.41558	27.53578				
S							6.794629	6.794629	17.31683				
R									5.2611				
U	17.32194	30.59894	43.87594	51.972	37.98404	27.8944	14.54973	13.47248	11.49922				
V									21.4491				
W	31.10541	44.04161	42.83461	55.806	44.72376	49.36432	38.39854	41.72567	30.8518				
X	8.9034	8.9034	8.9034	8.9034	8.9034	8.9034	8.9034	8.9034	8.9034				
Υ	32.70425	56.13425	58.90325	70.29	70.29	70.29	70.29	70.29	70.29				

Platelet Data

UK Platelet Data

	Absolute & Truncated DI																					
Instrumen ^a	1302CM1	1302CM2	1303CM1	1303CM2	1304CM1	1304CM2	1401CM1	1401CM2	1402CM1	1402CM2	1403CM1	1403CM2	1404CM1	1404CM2	1501CM1	1501CM2	1502CM1	1502CM2	1503CM1	1503CM2	1504CM1	1504CM2
A	0.733667	0.075787	0.2485	0.284	0.750748	1.66802	0	0.195754	0	0.195754	0	0.195754	0.024527	0.277735	0.314429	0.260048	1.129741	0.277205	0.311813	0.082955	0.214651	0.580465
В	0.414167	0.39409	0.934833	0.441778	0.586522	0.556007	0.193561	0.400019	0.193561	0.400019	0.193561	0.400019	0.110373	0.886108			0.185813	0.224042	0.915745	2.832307	1.007209	0.664052
С	0.508833	0.136416	0.698167	0.142	1.173043	0.720074	0.244914	0.442574	0.244914	0.442574	0.244914	0.442574	0.735818	0.780304			0.401355	0.455679	0.108314	0.146158	0.994	0.589752
D	0.343167	0.212202	0.556167	0.063111	0.445757	0.720074	0.154059	0.306397	0.154059	0.306397	0.154059	0.306397	0.159427	0.105804			0.787846	0.250624	0.810713	2.042264	1.172326	0.622258
E	0.568	0.287989	3.5			1.358115							0.049055	0.330637	0	0	0.022298				0.320326	0.501522
F	0					1.722709							0.367909	0.502569	0		1.241229		0.640036			0.547959
G	0.662667	0.742708	0.863833	0.473333		0.811223						1.438366	1.115991	0.81998	0		0.096623			0.075054		017 02202
Н	0.378667		0.011833			1.139358		1.727741	1.204817	1.727741	1.204817	1.727741	0.331118	0.608373	0		0.431085			0.628085		0.891594
			0.8875	0.899333		0.483088		3.5	3.5	3.5	3.5	3.5	0.956564				0.341895					0.111449
J		0.621449	1.337167	1.246444		0.428399	3.5	3.5	3.5	3.5	3.5		1.042409	0.26451			0.007433			1.884255		0.018575
K		1.636989	2.0945	0.394444		2.397209	0	0	0	0	0		0.171691	0.502569	0.781	3.5	0.364193	0.284799	0.370893	2.168671	0.716605	0.733707
L		1.439944	1.857833			0.282561								2.301235								\square
М		0.212202	0.437833			0.173182							0.036791	0			1.025686				0.855302	
N		0.045472	0.343167	0.347111		0.519547							0	0.317412	0.547714		1.650017	0.4253	0.554698	0.35947	0.888326	0.617614
0	0.153833	0	1.9525	0.820444		0.519547					0.027652				0.862143							\vdash
Р		0.970067	0.5325	0.063111		0.009115					0.019751				1.075143	0.086683						\vdash
Q		0.666921	1.479167	1.388444		0.009115				0.297886			0.306591	0.568696			1.434474	0.535423	1.355564			0.808007
R	0.047333	0.136416	0.130167	0.473333	0.586522	0.136723	0.584633	0.49364	0.584633	0.49364	0.584633	0.49364							1.545934	1.836852		0.840513
5	\vdash																0.364193	0.296191				0.696558
R																						0.552602
U	1.207	1.18227	0.437833	2.477111	0.398835	1.923236	0.308117	0.102132	0.308117	0.102132	0.308117	0.102132	3.249864	0.648049	1.257714	0.62845	2.735163	1.370835	0.449667	0.075054		0.933387
V	4.00					1 1010															1.991302	
W			0.343167	0.915111	0.375374	1.431034	0.142208	0.076599	0.142208	0.076599	0.142208	0.076599	0.110373	1.110941	0.344857	0.30339	0.869603	0.045568	0.882922	0.485877	0.293907	0.534028
X	1.3845	2.167494																				\vdash
Υ			1.195167	0.694222	2.627617	3.5	1.406278	1.217079	1.406278	1.217079	1.406278	1.217079										\Box

Key
1.5 > 1 < 2</p>
2.5 > 2 < 3</p>
3.5 > 3

UK Platelet Data

	Scores											
Instrumen	1304CM	1401CM	1402CM	1403CM	1404CM	1501CM	1502CM	1503CM	1504CM			
Α	22.56433	18.88213	16.86166	3.523571	4.162623	6.43496	13.70211	14.25714	15.58097			
В	19.96438	18.67632	13.97813	10.68443	13.10184	13.10184	11.99949	30.92632	34.97501			
С	20.2712	20.52463	19.60856	12.37478	17.34659	17.34659	18.36387	15.76577	16.17155			
D	14.04287	13.47339	12.52046	8.288209	7.11686	7.11686	10.58494	24.94006	34.11618			
E	49.30616	49.62909	27.93461	16.37656	13.19586	7.737005	10.65973	16.51837	21.44945			
F	31.1143	43.2016	50.14845	40.08155	31.9439	18.58338	19.55099	24.16478	31.63327			
G	21.88565	28.71996	35.96353	45.79969	42.14896	26.88239	19.71427	12.50715	24.68884			
Н	26.14123	40.82797	47.93899	52.78605	40.82764	23.23229	14.53461	20.60263	30.44996			
I	23.58761	59.42019	90.69919	126	92.51673	55.71477	16.51801	20.91495	18.7831			
J	31.05854	64.99884	91.49717	126	91.84151	54.93176	13.36368	23.07052	19.18149			
K	63.40974	46.77181	31.83814	0	4.045557	29.73156	33.62551	44.81733	27.83321			
L	28.31799	26.94401	26.44703	36.49405	46.81943	46.81943	46.81943	46.81943	46.81943			
M	10.86112	8.737274	4.715308	2.347103	1.785481	8.400311	16.34665	20.18635	21.59879			
N	12.05479	12.35458	10.91554	8.107869	7.309717	12.44422	22.1935	25.77404	26.97255			
0	21.24101	23.65003	10.34438	9.996049	9.996049	14.17732	14.17732	14.17732	14.17732			
Р	15.53871	5.832142	2.632313	1.121513	1.121513	7.718629	7.718629	7.718629	7.718629			
Q	24.15683	22.96334	9.630706	11.6191	12.99779	12.99779	20.94414	37.83729	43.27873			
R	9.062963	14.43011	17.27874	19.40891	19.40891	19.40891	19.40891	33.23599	35.5939			
S							3.962306	3.962306	13.59049			
R									3.652452			
U	45.75771	33.88359	18.85542	7.384493	28.31047	37.16596	59.34044	39.10129	39.07124			
V									21.28169			
W	31.82147	19.70096	13.46413	3.938531	9.953571	11.16947	16.70839	17.5933	18.67143			
Х	21.31197	21.31197	21.31197	21.31197	21.31197	21.31197	21.31197	21.31197	21.31197			
Υ	48.10204	63.84218	68.24599	47.22043	47.22043	47.22043	47.22043	47.22043	47.22043			

Review Meeting February 2016

- 25 participants
- ▶ 46 reporting methods
- ▶ 23 UK
- ▶ 23 Non-UK
- 9 countries
 - Finland, France, Gibraltar, Ireland, Italy, Kenya, The Netherlands, Portugal, UK
- Included in scope of accreditation for ISO17043

What next?

- Develop a graphical report format
- Consider extending the closing date
- Shadow scoring
- Consider increasing number of distributions to 6 per year
- On-line data returns/reports

Acknowlegements

- NHSBT
 - Rebecca Cardigan
 - Steve Garner
 - Simon Procter
- UK NEQAS Haematology
 - Barbara De la Salle
 - Vatsala Soni
 - Caroline Doré

