

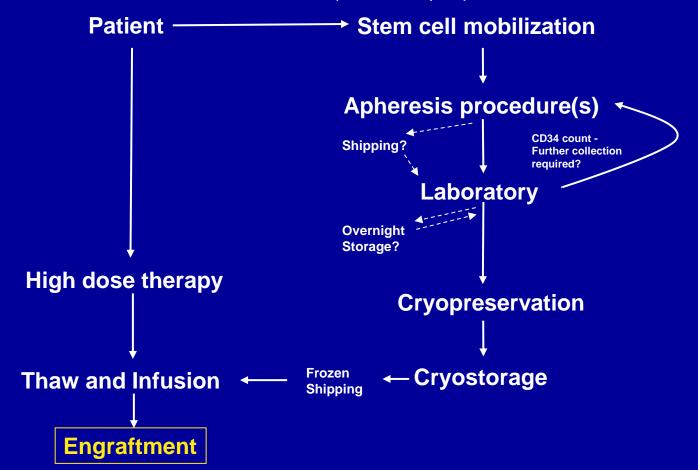
Improved Quality Systems in Stem Cell Processing to avoid Graft Failure Incidents

Dr Mike Watts

Director Cell Processing Laboratory
Wolfson Cellular Therapy Unit UCLH, London

Declaration of interests:

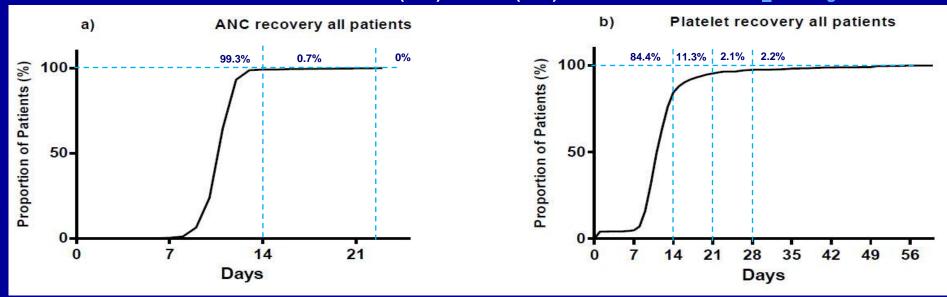
This work was supported in part by the NIHR Biomedical Research Centre at UCL/UCLH


Commercial: None

Dr Mike Watts

Director Cell Processing Laboratory Wolfson Cellular Therapy Unit UCLH, London

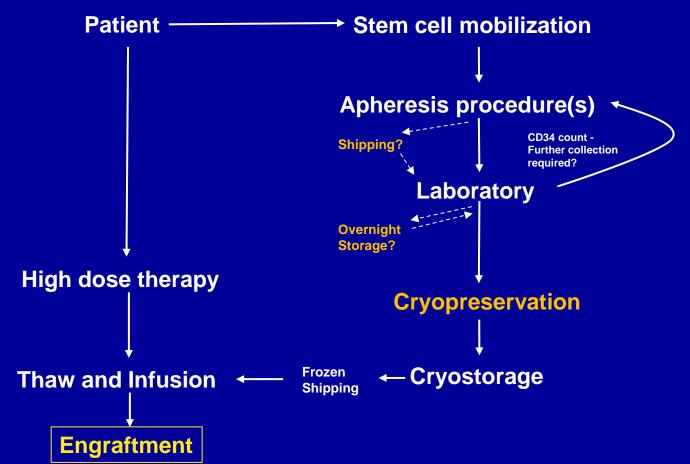
Autograft Stem Cell Pathway


Watts et al 2016 (BJH review in proof)

Autologous PBSCT Engraftment QA/QC

Watts and Linch 2016 BJH online (JACIE v6 standards C4.7.3: D 4.7.3: B4.7.3.1)

Pt no.	CD34	CD34	GM-CFC	Days to ANC	Days to PLT Release criteria UCLH	
	x10 ⁶ /kg	x10 ⁶ /kg	x10⁵/kg	0.5 x10 ⁹ /l	20 x10 ⁹ /l	
n=697	≥ 2	3.3	9.4	11 (6-23)	11 (0-67) CD34 > 2 No GM-CFC required	
n=107	< 2	1.6	4.7	12 (7-18)	13 (9-49) CD34 1< 2 and GM-CFC >2x105/kg	


ALERT: ANC >14 days in a single patient

ACTION: ANC >14 days in a second of the next 20 patients or

ANC in a single patient >28 days

Autograft Stem Cell Pathway

Watts et al 2016 (BJH review in proof)

Graft Failure due to Poor HPC Storage and/or Cryopreservation

- 1. Storage 'cell stress' and loss of CFC activity
- 2. Cryopreservation of 'stressed cells' and major CFC loss
- 3. Sub-optimal cryopreservation method and major CFC loss

Graft Failure due to Poor HPC Storage and/or Cryopreservation

Graft Failure Incident	Quality System Failure
Lazarus 2009 BBMT, 15:589	Delayed platelet recovery HPC, BM (allo): transit >20 hours at ambient temperature
Jansen 2009 BMT43: 499	Delayed platelet recovery HPC,A (allo): transit >48 hours (WBC 245 ±76 x109/l) poor temperature control
Watts 2003 Blood 102(11): 40	Pre cryopreservation storage stress: HPC,A (auto): 4 hour ambient shipping plus 4°C overnight storage, WBC 261±153 x10°/l : Slow/delayed ANC with 'offsite' frozen cells. 101 harvests affected: 65 adequate HPC collections lost (thaw GM-CFC <1x10°/kg) 23 re-harvested
Lioznov 2008 BMT 42:121-8	Pre cryopreservation storage stress: HPC,A (auto): 48 hrs transit with poor temperature control, WBC 220± 50 x10 ⁹ /l : Graft failure in 9/33 patients
Morgenstern 2016 BJH (online)	'Fast freeze' CFC damage ANC >30 days HPC,A (allo) x 2, HPC,A (auto) x 6 : Four deaths engraftment failure primary contribution in one case
Bavley & Karash : Oct 2008 pg1 Kansas City Star	'Fast freeze' CFC damage HPC,A (auto): 40 patients received 'fast freeze HPC' Delayed engraftment increased morbidity, mortality, 8 died within 100 days, 20 dead in 2 years
Abrams 1980 Lancet Aug 23rd p385	'Fast freeze' CFC damage: HPC, BM (auto) rescue for Ewings therapy, 13 'rapid' ANC recovery but 3 children receiving 'fast freeze' cells ANC >40 days and comparable with two patients where no autologous bone marrow cells were available
Gorin 1983 Eur J Cancer Clin Oncol 19:485	'Fast freeze' CFC damage: HPC, BM (auto): 8/35 deaths with engraftment failure – three deaths directly attributable, 5 contributory

HPC Quality Assessment: Viability and Potency

HPC QUALITY	TEST	PROS	CONS
POTENCY	Engraftment	Ultimate potency measure	Retrospective
VIABILITY BY DEAD CELL EXCLUSION	All Cells e.g. Trypan Blue, 7-AAD	Rapid	 Functionally uninformative as CFC <1% of bulk harvest and heterogeneous cell populations
	CD34+7AAD	Highly predictive of potency potential of fresh harvestRapid, standardised	 May give overly optimistic measure of CFC survival Thaw viable CD34 not standardised
VIABILITY BY FUNCTION	Colony Assays	Potency potentialProven 14 day CFC survival'bad freeze' investigation	Poorly standardisedTwo week incubation

Storage Factors Affecting HPC Potency

- 1. Temperature
- 2. White cell concentration
- 3. Time

Loss of PBSC Viability and Potency During Storage

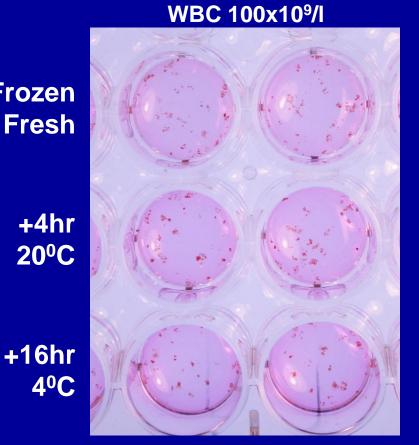
Jansen et al Cytotherapy 2009:11:79 (& coolbox validation 2010:12:919)

Storage Conditions	Storage Temperature	Progenitor survival (%) after 48 hours in storage	
		GM-CFC	Viable CD34 (7AAD-)
Temperature (WBC 200x10 ⁹ /I)	22°C 17°C 13°C 4°C	6 18 50 86	18 67 80 96
Cell Concentration WBC (x10 ⁹ /l) 200 100 50 25	22ºC	6 9 25 51	19 43 55 81
200 100 50 25	4ºC	86 93 98 91	95 98 98 95

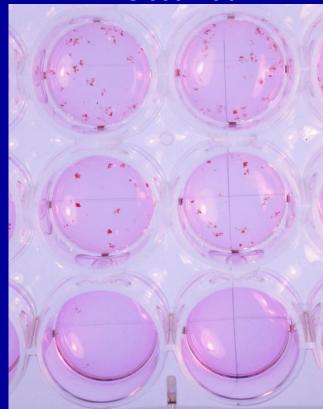
Supporting evidence: Pettengell et al 1994, Jestice et al 1994, Sugrue et al 1998, Petzer et al 1999, Kao et al 2011, Fry et al 2013

Graft Failure due to Poor Storage and/or Cryopreservation

- 1. Storage 'cell stress' and loss of CFC activity
- 2. Pre-freeze stored 'stressed cells' and major CFC loss
- 3. Sub-optimal cryopreservation method and major CFC loss


Thaw colonies of PBSC samples adjusted to low and high WBC and stored prior to cryopreservation

Watts et al 2003 Blood 102(11): p.40a.


Frozen

+4hr 20°C

+16hr 40C

WBC 500x109/I

Certified Transit for HPC (2-10°C)

International Safe Transit Association www.ista.org

JACIE v6 standards
Assess storage risks and control D2.3 & D.2.3.1

Credo Cube™ Pelican Bio Thermal

- Frozen 'tic plate' enclosure
- Certified up to 96 hour transit time
- Requires -20°C freezer for plates
- Smaller box hand delivery suitable

Transmed range, Sarstedt Ltd

- End plates and frames chilled at 4°C
- Certified for 48 hour transit
- No freezer required
- Larger package vehicle delivery

Graft Failure due to Poor Storage Conditions and/or Cryopreservation

- 1. Storage 'cell stress' and loss of CFC activity
- 2. Pre-freeze stored 'stressed cells' and major CFC losses
- 3. Sub-optimal cryopreservation method and major CFC loss

Patients Affected – ANC recovery >30 days viable CD34+ cell dose infused

Morgenstern et al 2016 BJH

Subject	Fresh CD34 x10 ⁶ /kg x10 ⁶ /kg	Thaw viable CD34 (CD34+7AAD-)
Allo 1	8.56	8.59
Allo 2	2.92	3.00
Auto 1	6.60	6.12
Auto 2	5.61	4.84
Auto 3	3.88	2.94
Auto 4	4.00	3.39
Auto 5	17.99	14.63
Auto 6	5.22	4.01

Stored Harvests Thaw Tested for CD34 viability

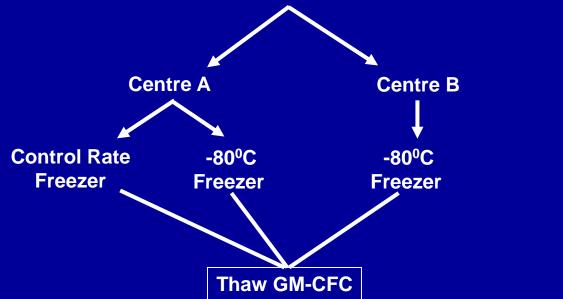
Morgenstern et al 2016 BJH

Date Frozen	Fresh CD34 x10 ⁶ /kg (7AAD >98%)	Thaw CD34+ 7AAD- (%)	Thaw CD34+ 7AAD- x10 ⁶ /kg
19/04/2013	2.0	99	1.3
13/03/2013	4.8	99	3.6
30/07/2013	6.5	91	6.1
30/09/2010	3.4	94	2.8
28/09/2011	30.8	88	26.8

Stored Harvests Thaw Tested for GM-CFC

Morgenstern et al 2016 BJH

Date Frozen	Fresh CD34 x10 ⁶ /kg (7AAD >98%)	Thaw CD34+ 7AAD- (%)	Thaw CD34+ 7AAD- x10 ⁶ /kg		Thaw GM-CFC expected (CD34:GM ratio 0.11) (Min UCLH ≥1 x10 ⁵ /kg)
19/04/2013	2.0	99	1.3	0.0	2.2
13/03/2013	4.8	99	3.6	0.58	5.3
30/07/2013	6.5	91	6.1	0.13	7.2
30/09/2010	3.4	94	2.8	0.16	3.7
28/09/2011	30.8	88	26.8	0.29	33.9

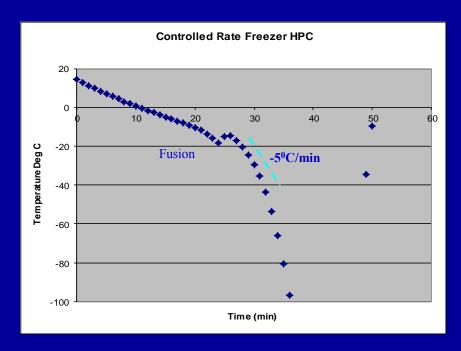

CD34+ cells 'viable' but poorly clonogenic

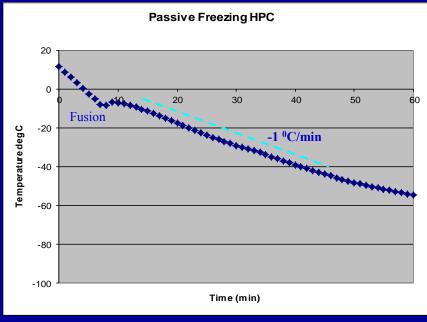
Split Harvest HPC, A Experiments to Investigate the Freeze Step

Morgenstern et al 2016 BJH

Cryoprotectant method, regents, disposables same on both sites

- 1. Cryoprotectant added to HPC,A (n=4) at clinical scale as for patient use
- 2. Split between Controlled Rate Freezer or -80°C mechanical freezer


Split Harvest Thaw Colonies: CRF versus -80°C Freezer

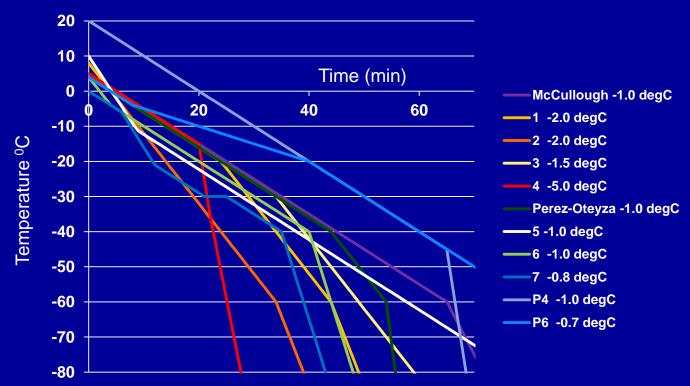

HPC,A	BFUE /well	E GM-CFC /well	GM-CFC x10 ⁴ ml (yield%)
		7 - 2 - 2 - 2	(),
HPC 1 PRE	36	33	38 (100%)
Centre B -80°C	19	17	23 (59%)
Centre A -80°C	21	18	25 (64%)
Centre A CRF	0.5	0	0 (0%)
HPC 2 PRE*	15	6	9 (100%)
UCLH -80°C	8	5	10 (106%)
Centre A -80°C	9	5	10 (112%)
Centre A CRF	0	0	0 (0%)
HPC 3 PRE*	15	3	6 (100%)
UCLH -80°C	7	4	7 (118%)
Centre A -80°C	6	2	4 (47%)
Centre A CRF	0.3	0	0 (0%)
HPC 4 PRE	21	47	33 (100%)
Centre A -80°C	14	29	23 (70%)
Centre A CRF	2	0	0 (0%)

^{*} CD34 selection 'flow through waste' HPC

Freeze profile of split PBSC harvest in Controlled Rate Freezer versus Passive in a Mechanical Freezer (-80°C)


Morgenstern et al 2016 BJH

ANC recovery using 'Passive Freeze' for HPC at -80°C

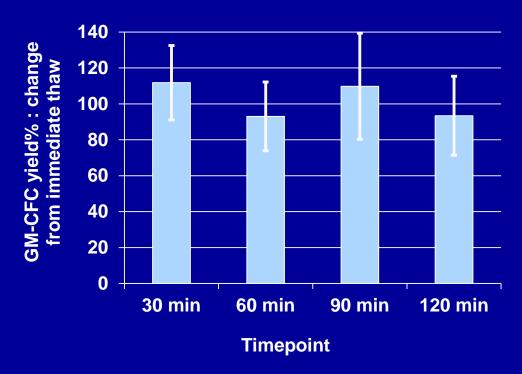

Morgenstern et al 2016 BJH

What is the 'Standard Controlled Rate Freeze' profile?

Variability in HPC Freeze Profiles in Clinical Use

Seven UK centres (1-4 and 5-7), two published and two 'pre-set' on CRF machine Freeze rate/min from -20°C to -40°C shown

*Two published HPC CRF profiles validated by thaw CFC McCullough et al Transfusion 2010; 50:808
Perez-Oteyza et al Haematologica 1998; 83:1001


Laboratory Validation of HPC Cryopreservation

JACIE v6 standards

'Viability, potency & stability' D9.2.3

'Representative pilot vial' D8.1.2.2

Cryopreservation Potency Audit and GM-CFC stability of thawed PBSC harvests at room temperature UCLH (n=8)

GM-CFC yield mean (±SD) from fresh harvest = 68 ± 27% Yields over time shown normalised to immediate thaw results

Years stored mean (range) 6 (0.9-10.5) years

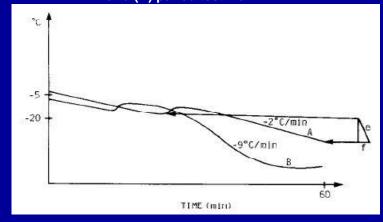
Test Vials are an unreliable indicator of Clinical Harvest GM-CFC

Douay 1986 et al Cryobiology 1986:23:296 (fig.1 below)

Thaw GM-CFC >50%	<30%
(mean ± SD)	

Douay (BM=11)

Test vial	48 ± 38%	5/11	4/11
Paired harvest	84 ± 15%	11/11	0/11


UCLH* (PBSC=12)

Test vial	43 ± 54%	8/12	2/12
Paired harvest	65 ± 24%	10/12	0/12

Other reasons for poor pilot vial CFC

- Final step in HPC processing
- Storage: Stays with product?
- Same freezer as product?
- Same temperature as product?
- Rack storage and TWEs?

Fig 1. Douay et al Cooling curves of clinical sample (A) and (B) paired test vial

Conclusions: Quality Systems Check

Shipping/Storage

- Avoid risk: Cryopreserve immediately
- Control risk: 2-10°C, WBC <200 x10°/l ('safe' WBC threshold for cryopreservation?)

Monitoring / Validation

- Determine benchmark engraftment kinetics, alert and action limits
- Case by case engraftment monitoring by lab and clinical team.
- Colony assays to validate potential functional processing damage for HPC

Unresolved

- Pilot vial samples poorly representative of harvest for functional tests
- Need for a rapid assay to replace CFC eg flow 'metabolic viability' ALDH?'