

Next generation sequencing of JK (SLC14A1) gene reveals higher frequency of variant alleles, novel allele-defining SNPs (allele reference fingerprints) and reassignment of a purported JK Null allele

Malik Altayar
PhD Student, Plymouth University

Topics

- Introduction
- Workflow
- JK NGS sequencing results

Blood Group Genotyping Applications

- Foetal genotyping (HDFN)
- Testing multiply transfused patients (sickle cell disease)
- Solving difficult serological results
- Autoimmune patient
- Limited serological reagents (Dombrock)

(High demand on genotyped blood units)

Genotyping needs to be Accurate, high-throughput and relatively cheap application (if to be routinely used)

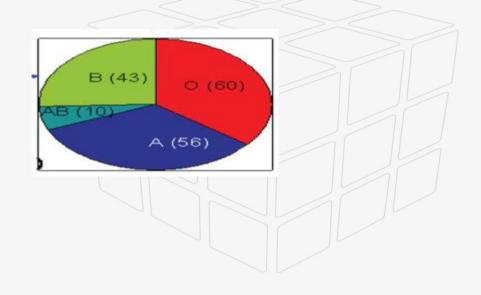
High throughput Genotyping methods

The BLOODchip

- The human erythrocyte antigen (HEA BeadChip ™) platform
- Based on a DNA-array analysis

Multiplex PCR Amplicons + Dye mutations, allele group systems.

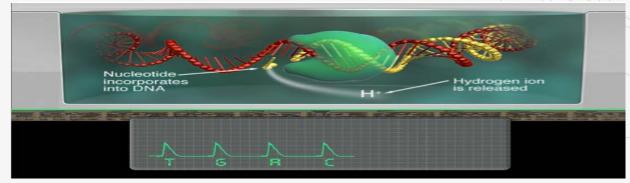
Hybridisation Microarray of oligonucleotides


Insufficient to define and discover unknown, emerging mutations, alleles in blood group systems.

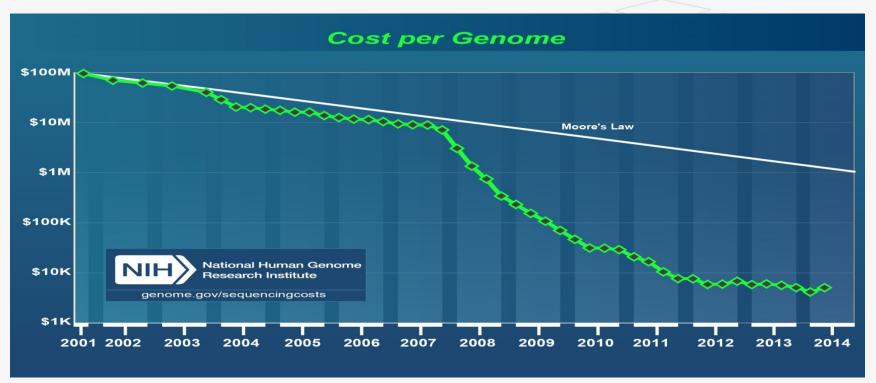
Increase in the number of blood groups alleles

- No. of alleles ABO
- 2001 (72)
- 2007 (215)
- 2013 (320)

Next Generation Sequencing (NGS)


- Enables high throughput sequencing (Massively Parallel DNA sequencing).
- i.e. capable of sequencing various regions of interest in a significant number of samples in one run.
- Fast
- Cost effective

Ion Torrent Personal Genome Machine (PGM™)


Principle:

- Sequencing by synthesis, Nucleotide incorporation into DNA releasing Proton.
- Detect change in pH

Costs

ProjectExtensive NGS-based genotyping of blood group genes:

- ABO
- Duffy (FY, ACKR1)
- Kidd (JK, SLC14A1). 36 JK alleles
- Sequence the entire gene (exons and introns)
 plus flanking regions (regulatory regions)

Long-Range PCR

The workflow

Construct Library

Prepare Template

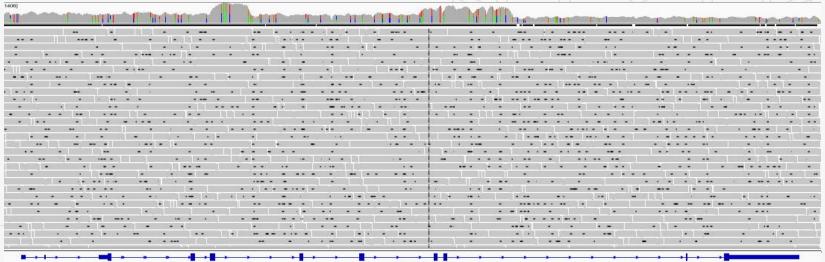
Run Sequence

Data analysis

Data Analysis (Variant analysis)

Several bioinformatics software packages and websites are used such as:

- Ion Torrent Suite ™ plugins (such as coverage analysis, VariantCaller, Alignment and FastQC)
- Ion Reporter ™
- Integrative Genomics Viewer (IGV)
- Seattle annotation web site.
- Database, such as NCBI.
- Some cases of SNPs were confirmed by further analysis, e.g. Cloning and Sanger sequencing.


JK

- **67** samples
- 3.5 million reads
- Coverage depth of more than 700x.
- Data quality more than 99% accurate
- Significant number of intronic SNPs (80) were found.

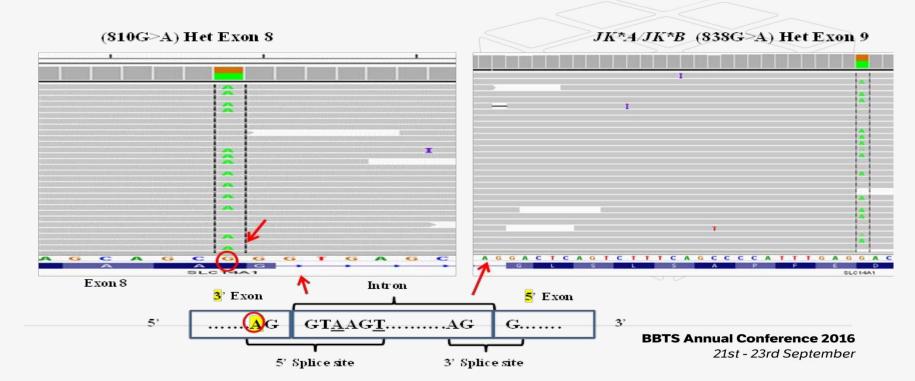
NGS sequence

- Complete coverage across the gene
- All existing polymorphisms in various parts are visible

Findings

- 10/67 samples carry the SNP 130G>A (assigned to allele JK*01W.01 encoding weak Jka), one homozygous, all with normal antigenicity.
- Reassignment of purported JK*B Null allele (SNP 810G>A), was found in 10/67 samples, all with normal serological Jkb expression.
- Intronic polymorphisms analysis:
- 1. Unique *JK* alleles' fingerprints (suggested allele reference sequence).
- 2. JK*01W.01 allele sequence resembles JK*A/JK*B hybrid
- 3. SNP close to JK*A/JK*B critical polymorphism 838G>A, may lead to allelic dropout during BGG

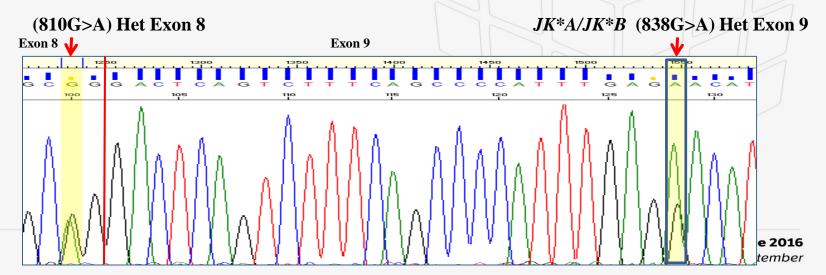
 BBTS Annual Conference 2016
 21st 23rd September



Novel JK*B 810G>A Null allele?

- 810G>A SNP encodes for synonymous amino acid substitution Ala270Ala.
- located at the exon 8/intron 8 boundary (the second last nucleotide of exon 8)
- Due to its location, it was suggested to alter the expression of the Jkb antigen in 2 Jk(a+b-) samples > disturbing the splice site > novel JK*B allele. (Henny et al., 2014)

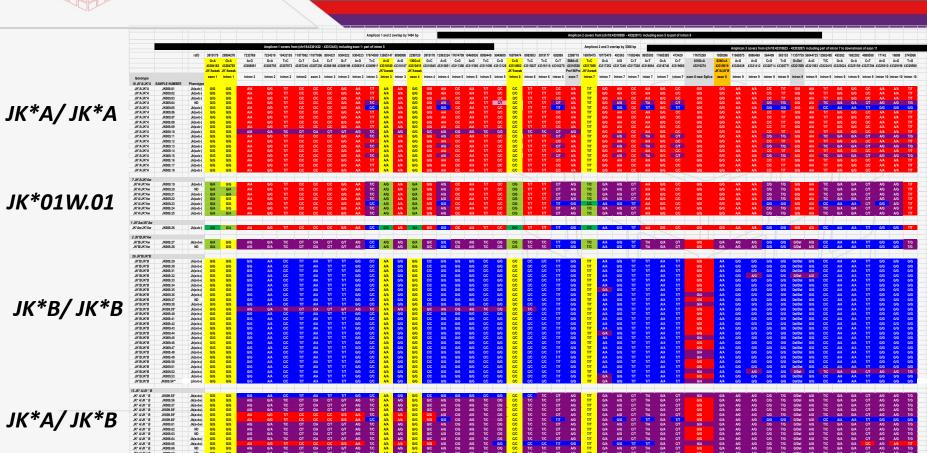
Novel JK*B 810G>A Null allele?



No effect on (Phenotype nor Genotype)?

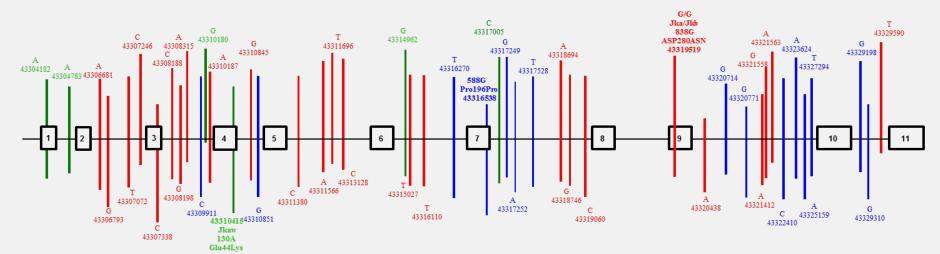
- cDNA analysis
- Phenotype: All (10 samples) with this 810G>A SNP were (Jka-b+) or (Jka+b+)
- Genotype: no silencing effect (no exon skipping)

Sample JK009.55 (Jk a+b+, JK*A/JK*B)





Allele-specific intronic polymorphisms ('fingerprints')


- The **correlation** of intronic polymorphisms with *JK* alleles (*JK*A*, *JK*B* and *JK*01W.01*) was assessed in **homozygous** allele samples.
- JK allele (JK*A, JK*B and JK*01W.01) specific patterns were found (suggested reference sequences), those samples differing from these patterns represent new alleles.
- JK*01W.01 allele sequence (hybrid JK*A/JK*B).

D) JK*Aw (JK*01W)

• **130G>A** might not be the only factor for weakening the Jka expression. (Cumulative effect?)

Other findings

• SNP 588A>G and -46 G from intron 9 SNPs described to be associated with JK*B and JK*01W.01, however, have also been found in JK*A allele samples.

Key points

- NGS allows simultaneous comprehensive sequencing of a large number of samples for various blood group genes.
- Discovery mode, novel and rare alleles.
- Accurate phenotype predictions. Unlike microarray platforms.
- Exploring polymorphisms across the gene (exons, introns and flanking regions) provides comprehensive genotyping.

Key points

- Also, helps in studies of the evolution of alleles
- Polymorphisms frequency. (high throughput)
- Allows the discovery of the causative factors in Discrepant and unusual phenotype samples due to novel or rare weak or null allele (for example, explore splice sites and regulatory regions).
- Cataloguing polymorphisms close to critical SNPs to be taken into consideration while designing genotyping primers.
- These information helpful to develop genotyping software (allele-specific patterns).

- This NGS approach has been also applied to other blood group systems such as ABO, RH, KEL and FY.
- Near future, NGS will become the potential methodology of choice for genotyping patients and donors

Acknowledgements

- Professor Neil Avent
- Dr. Tracey Madgett
- Plymouth University research team.
- Tabuk University, Saudi Arabia

