
Some Observations on Haemoglobin A₂

Barbara J Bain St Mary's Hospital and Imperial College London

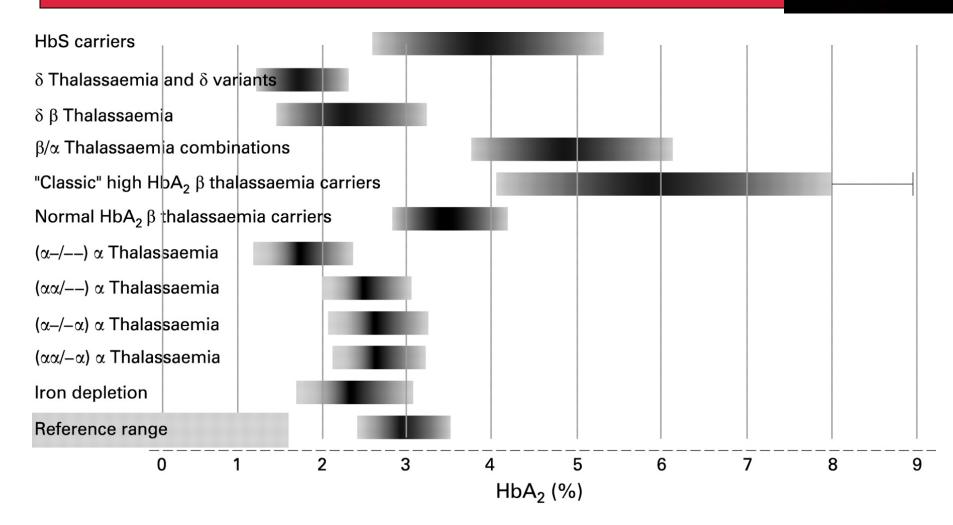
Image from www.dsc.discovery.com

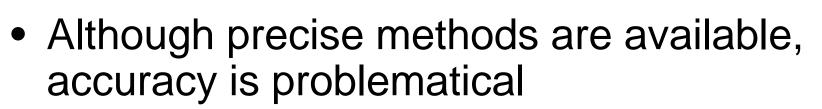
Haemoglobin A₂ function

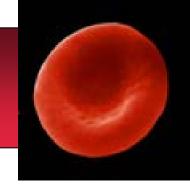
- Higher oxygen affinity than haemoglobin A
- Otherwise similar function
- Inhibits the polymerisation of haemoglobin S

Haemoglobin A₂ synthesis

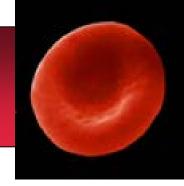
- Not synthesised in reticulocytes
- Half life of mRNA is less than a third of that of β chain mRNA
- Transcription of *HBD* is 50 times less efficient than transcription of *HBB*
- Adult rate of synthesis reached between one and two years of age
- Pancellular distribution


Genetic control

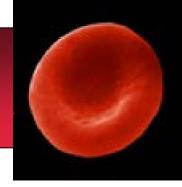

- Correlates weakly with the percentage of F cells (r = 0.14, p < 0.01), both relating to alleles of a SNP at 6q23.3
- Production of both γ and δ globin decreases as proerythroblasts mature
- Also correlates with SNPs in the region of the beta *HBB* at 11p15.4


- Important in the diagnosis of β thalassaemia heterozygosity
- Results may be inaccurate, imprecise or both
- Many inherited and acquired characteristics influence the A₂ percentage

Mosca A et al. J Clin Pathol 2009;62:13-17 (BioRad HPLC, based on 100 normal and 670 others)



- Not only do normal ranges and mean normal values differ between methods and manufacturers, they may also differ between two instruments made by the same manufacturer
- With some methods it may be impossible to measure A₂ in some patients


Analytical objectives

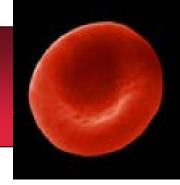
- SD of about 0.05%
- Duplicates should be within 0.2% of each other
- CV should be about 2% in the normal range and about 1% in the β thalassaemic range

Method with unsatisfactory precision and accuracy

 Alkaline electrophoresis followed by scanning densitometry (imprecise and also percentage overestimated)

Methods with satisfactory precision

- Alkaline electrophoresis followed by elution
- Microcolumn chromatography
- High performance liquid chromatography (HPLC)
- Capillary electrophoresis



Variation in precision between methods

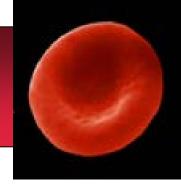
Precision of duplicate estimates of haemoglobin A₂ percentage by HPLC, microcolumn chromatography (MC) and scanning densitometry

Method	Number of samples	CV
HPLC	5	1.0%
MC	5	2.4%
Scanning densitometry	10	10.5%

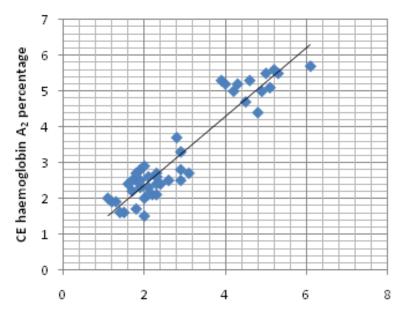
From Head CE, Conroy M, Jarvis M, Phelan L and Bain BJ (2004) Some observations on the measurement of haemoglobin A₂ and S percentages by high performance liquid chromatography *i*n the presence and absence of thalassaem*i*a. *J Clin Pathol*, **57**, 276-280.

Comparison of precision between methods

CV of replicate measurements (within run) and duplicate measurements (between run) showing good precision with both methods

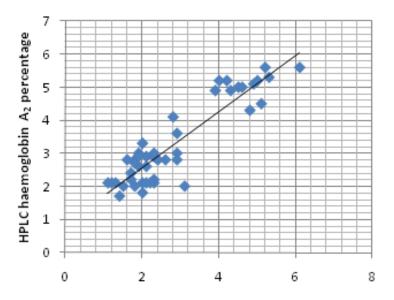

	HPLC	CE	n
Within-run CV	0.278	0.219	10
Between-run CV	0.128	0.194	8

 There is a significant difference between methods for normal samples, capillary electrophoresis (CE) giving a somewhat higher result than HPLC in this study

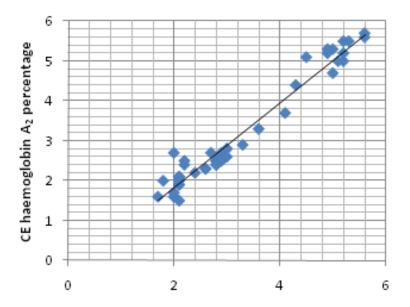

A₂ estimate on 78 normal antenatal samples (normal indices, no variant haemoglobin)

Method	Mean	95% range	Significance of difference
HPLC	2.65	2.25-3.05	p< .0001
CE	2.77	2.34-3.20	

- When three methods are used (HPLC, CE and microcolumn chromatography) there is good correlation but a significant bias between methods
- The graphs that follow are for 46 specimens selected to have a A₂ percentages below, within and above the normal range



Microcolumn haemoglobin A2 percentage


	Mean A ₂	
MC	2.83%	r = 0.941, p <0.001
CE	3.17%	

Microcolumn haemoglobin A2 percentage

	Mean A ₂	
MC	2.83%	r = 0.912, p <0.0001
HPLC	3.27%	

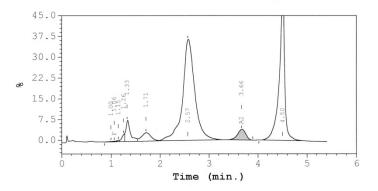
HPLC haemoglobin A2 percentage

	Mean A ₂	
CE	3.17%	r = 0.978, p <0.03
HPLC	3.27%	

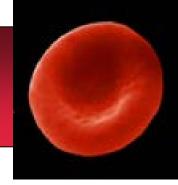
An inherited characteristic influencing haemoglobin A₂ measurement

- Post-translationally modified haemoglobin S has the same retention time as A₂
- This does not occur with capillary electrophoresis

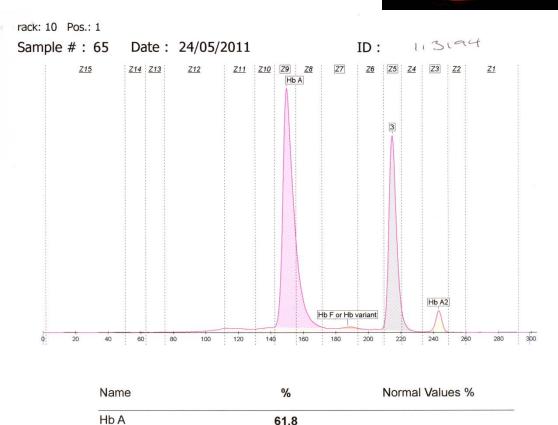
HPLC in sickle cell trait


Peak Name	Calibrated Area %	Area %	Retention Time (min)	Peak Area
Unknown		0.1	1.00	1048
F	0.1*		1.06	2061
Unknown		0.2	1.15	3080
Unknown		0.9	1.26	16287
P2		4.1	1.33	73824
P3		3.4	1.71	62032
Ao		52.7	2.57	952857
A2	3.8*		3.66	67933
S-window		34.8	4.50	630014

Total Area: 1809136


F Concentration = 0.1* % A2 Concentration = 3.8* %

*Values outside of expected ranges


Analysis comments:

From Bain, Wild, Stephens and Phelan, Variant Haemoglobins, Wiley-Blackwell, 2010

Capillary electrophoresis in sickle cell trait (not paired samples)

0.6

34.5

3.1

From Borbely, Phelan, Szydlo and Bain (2012) Capillary zone electrophoresis for haemoglobinopathy diagnosis, *in press*, *J Clin Pathol*

Hb F or Hb variant

3

Hb A2

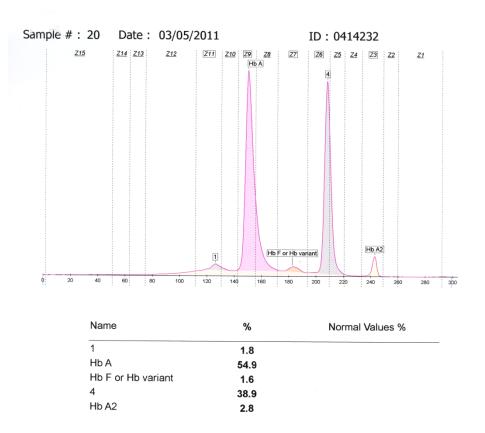
Inaccuracy of haemoglobin A₂ estimated in the presence of haemoglobin S

Mean, standard deviation, and 95% range of measurements of haemoglobin A_2 percentage in 73 patients with sickle cell trait when measured by HPLC, microcolumn chromatography (MC) and scanning densitometry

Method	Mean (SD)	95% range
HPLC	4.4% (0.34)	3.7–5.1%
MC	3.3% (0.36)	2.6-4.0%
Scanning densitometry	3.6% (0.70)	2.2–5.0%

HPLC,MC difference p<0.001; HPLC, densitometry difference p < 0.01); MC, densitometry difference p > 0.05

From Head CE, Conroy M, Jarvis M, Phelan L and Bain BJ (2004) J Clin Pathol, 57, 276-280.



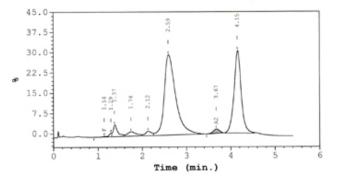
- This inaccuracy in the presence of haemoglobin S does not occur with capillary electrophoresis (CE), which gives significantly lower results than HPLC
- Mean of A_2 in AS samples by CE 3.01%
- Mean of A₂ in AS samples by HPLC 3.50%
- Significance of difference p< 0.0001

- Haemoglobin A₂ is also underestimated by HPLC in comparison with CE in patients with haemoglobin D Punjab heterozygosity
- Mean values were 2.07% by HPLC and 2.77% by CE on three samples

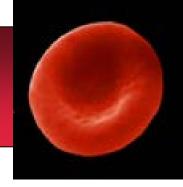
- Capillary electrophoresis
- Haemoglobin D Punjab heterozygote – good separation of A₂ and D peaks

HPLC

- Haemoglobin D Punjab heterozygote – poor separation of A₂ and D peaks
- A₂ underestimated


Peak Name	Calibrated Area %	Area 8	Retention Time (min)	Peak Area
F	0.1*		1.14	1735
Unknown		0.6	1.29	7602
P2		3.2	1.37	40510
P3		2.4	1.74	30771
Unknown		1.7	2.12	20844
Ao		55.2	2.59	695575
A2	1.6*		3.67	19397
D-window		35.2	4.15	444023

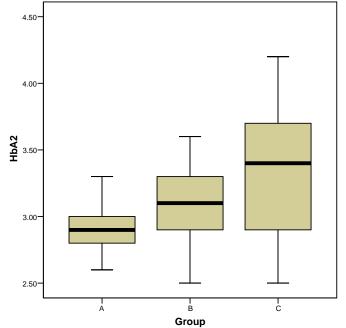
Total Area: 1260457


F Concentration = 0.1* % A2 Concentration = 1.6* %

*Values outside of expected ranges

Analysis comments:

From Bain, Wild, Stephens and Phelan, Variant Haemoglobins, Wiley-Blackwell, 2010



- The haemoglobin A₂ results by HPLC in the presence of haemoglobin S or D-Punjab are given as examples of inaccuracy
- They are not of importance in diagnosis

- Results may be accurate but misleading
- Haemoglobin A₂ is raised by HIV infection and raised further by zidovudine treatment

- Normal volunteers, mean Hb A₂
 2.897%
- HIV-infected patients, not on antiretroviral treatment, mean Hb A₂ 3.094%
- Significance of difference p < 0.001
- HIV-infected patients, on antiretroviral treatment (HAART), mean Hb A₂ 3.4%

Wilkinson, Bain, Phelan and Benzie (2007) AIDS, 14, 37-42.

Percentage of individuals with Hb A₂ more than 3.3%

- Normal volunteers, 0%
- HIV-infected patients, not on antiretroviral treatment, 13.3% (p 0.017 cf normals, p <0.001 cf. on treatment)
- HIV-infected patients, on antiretroviral treatment (HAART), 53.3% (p < 0.0001 cf normals)

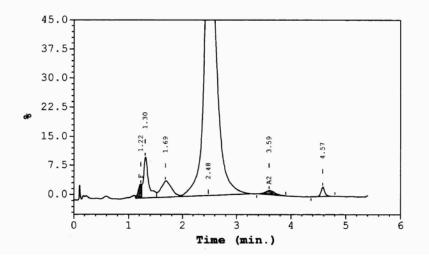
Similar observations had previously been made by others

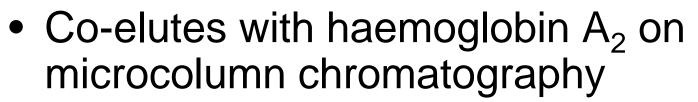
- Routy JP, Monte M, Beaulieu R, Toma E, St-Pierre L and Dumont M (1993) Increase of hemoglobin A2 in human immunodeficiency virus-I-infected patients treated with zidovudine. *Am J Hematol*, **43**, 86-90.
- Galactéros F, Amaudric F, Préhu C, Feingold N, Doucet-Populaire F, Sobel A and Rosa J (1993) Acquired unbalanced hemoglobin chain synthesis during HIV infection. *C R Acad Sci III*, **316**, 437-440.
- Howard J, Henthorn JS, Murphy S and Davies SC (2005) Implications of increased haemoglobin A2 levels in HIV-positive women in the antenatal clinic. *J Clin Pathol*, **58**, 556-558.

Haemoglobin A₂ – some more problems

- Delta chain variants
- Delta thalassaemia
- Alpha chain variants

Haemoglobin A₂ prime heterozygosity


		있는 책상 한 가슴 실실 것이 한 가슴		
F	1.1		1.22	16414
P2		5.1	1.30	71537
P3		4.1	1.69	58485
Ao		87.8	2.48	1241603
A2	1.0*		3.59	13383
S-window		0.9	4.57	12223


Total Area: 1413646

F Concentration = 1.1 % **A2** Concentration = 1.0 %

*Values outside of expected ranges

Analysis comments:

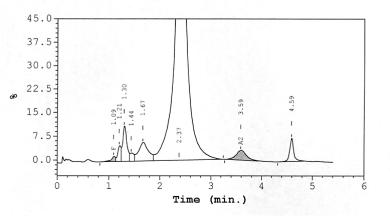
- Separates on cellulose acetate electrophoresis, capillary electrophoresis and HPLC
- Need to distinguish form haemoglobin S carryover

 In a CAP proficiency survey only a third of laboratories using HPLC identified A₂ [Joutovsky *et al.* 2004]

 Variant delta chain is synthesised at somewhat reduced rate

A2'	A2	Significance	Reference
1.3 (0.94-1.66)	1.7 (1.56-1.84)		Van Kirk 2005
1.24 (0.89-1.59)	1.58 (1.25-1.9)	p<0.0001	Abdel-Gadir 2008

Van Kirk R, Sandhaus LM, Hoyer JD (2005) The detection and diagnosis of hemoglobin A2' by high-performance liquid chromatography. *Am J Clin Pathol*, **123**, 657-61. Abdel-Gadir D, Phelan L and Bain BJ (2009) Haemoglobin A₂' and its significance in β thalassaemia diagnosis. *Int J Lab Hematol*, **31**, 315-319.


Haemoglobin A₂ prime plus β thalassaemia trait

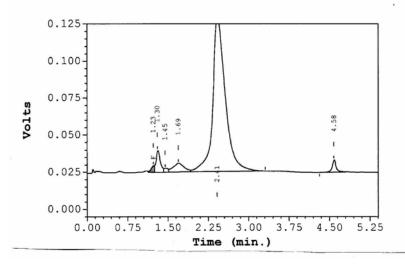
Peak Name	Calibrated Area %	Area %	Retention Time (min)	Peak Area
F	0.5		1.09	9567
Unknown		1.3	1.21	22251
P2		3.7	1.30	64598
Unknown		0.8	1.44	14465
P3		4.5	1.67	78283
Ao		84.2	2.37	1465577
A2	3.1		3.59	44847
S-window		2.4	4.59	41401

Total Area: 1740990

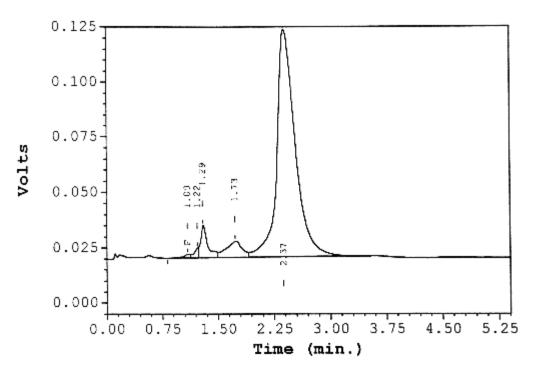
F Concentration = 0.5 % A2 Concentration = 3.1 %

Analysis comments:

From Bain, Wild, Stephens and Phelan, Variant Haemoglobins, Wiley-Blackwell, 2010


With thanks to Ms Joan Henthorn

Haemoglobin A₂ prime homozygosity

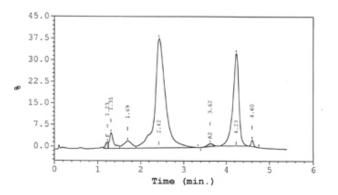

Peak Name	Calibrated Area %	Area 8	Retention Time (min)	Peak
F	1.0		1.23	20061
P2		4.1	1.30	79150
Unknown		0.7	1.45	14091
P3		4.3	1.69	83699
Ao		87.6	2.41	1695288
S-window		2.2	4.58	42688

Total Area: 1934978

F Concentration = 1.0 % A2 Concentration = %

Delta⁰ thalassaemia homozygosity

- Alpha chain variants – some of your A₂ is missing
- Haemoglobin G Philadelphia


Peak Name	Calibrated Area %	Area 8	Retention Time (min)	Peak Area
F	1.0		1.23	25854
P2		3.4	1.31	88450
P3		3.2	1.69	83353
Ao		60.6	2.42	1560836
A2	1.0*		3.62	23802
D-window		30.0	4.23	773315
S-window		0.8	4.60	20111

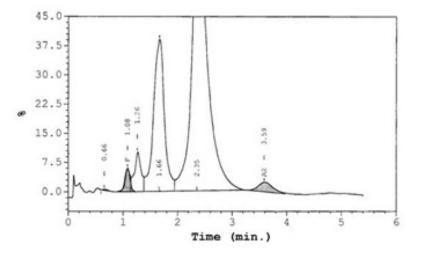
Total Area: 2575721

F Concentration = 1.0 % A2 Concentration = 1.0* %

*Values outside of expected ranges

Analysis comments:

- Alpha chain variants – some of your A₂ is missing
- Haemoglobin Buffalo


Peak Name	Calibrated Area %	Area 8	Retention Time (min)	Peak
P1		0.1	0.66	1724
F	1.9*		1.08	43877
P2		4.0	1.26	97958
P3		25.3	1.66	613626
Ao		66.7	2.35	1620511
A2	2.4		3.59	50506

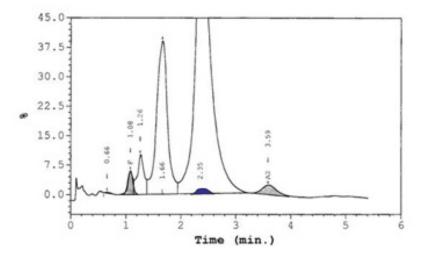
Total Area: 2428202

F Concentration = 1.9* % A2 Concentration = 2.4 %

*Values outside of expected ranges

Analysis comments:

- Alpha chain variants – some of your A₂ is missing
- Haemoglobin Buffalo
- The A₂ variant is lost in the A peak


Peak Name	Calibrated Area %	Area 8	Retention Time (min)	Peak Area
P1		0.1	0.66	1724
F	1.9*		1.08	43877
P2		4.0	1.26	97958
P3		25.3	1.66	613626
Ao		66.7	2.35	1620511
A2	2.4		3.59	50506

Total Area: 2428202

F Concentration = 1.9* % A2 Concentration = 2.4 %

*Values outside of expected ranges

Analysis comments:

Factors affecting haemoglobin A₂ percentage

- Having given some examples, I shall now summarise
 - Factors lowering A₂
 - Factors elevating A₂

Factors lowering haemoglobin A₂ percentage

Inherited conditions

- Delta and delta-beta thalassaemia
- Alpha thalassaemia (including haemoglobin H disease)*
- Haemoglobin Lepore
- Alpha chain variant
- Delta chain variant
- * When α chain production is reduced $\alpha\beta$ dimers form preferentially compared with $\alpha\delta$

Factors lowering haemoglobin A₂ percentage

Acquired conditions

- Iron deficiency anaemia*
- Anaemia of chronic disease*
- Sideroblastic anaemia*
- Lead poisoning*
- Juvenile myelomonocytic leukaemia

..... and

• Acquired haemoglobin H disease

*Actual or functional iron deficiency reduced α chain synthesis

Factors lowering haemoglobin A₂ percentage

- Some AML, particularly erythroleukaemia
- Some aplastic anaemia
- Hypothyroidism

Factors elevating haemoglobin A₂ percentage

Inherited conditions

- Some unstable haemoglobins
- Thalassaemic haemoglobinopathies, e.g. haemoglobin E
- Haemoglobin S heterozygosity (small genuine increase) and homozygosity
- Vietnamese/South-East Asian type of deletional hereditary persistence of fetal haemoglobin (which spares the δ gene)

Factors elevating haemoglobin A₂ percentage

Inherited conditions

- Inherited high A₂
 - Mutation in δ promoter
 - KLF1 mutation (e.g. 3.3-4.1%)
- Triple α reported (Perseu *et al.* 2011) but not confirmed (Stephens *et al.* 2012)
- Pseudoxanthoma elasticum
- Some CDA (Israeli Bedouins)
- Down's syndrome (up to 80 days of age)

Factors elevating haemoglobin A₂ percentage

Acquired conditions

- HIV infection
- Treatment of HIV infection
- Some cases of megaloblastic anaemia
- Hyperthyroidism

Conclusions

- Not so simple
- We need accurate and precise laboratory methods
- We need careful interpretation

www.globalgiving.com/

