RBC administration during trauma resuscitation of a young female



Mark Yazer, MD
University of Pittsburgh

# My disclosures

- Grífols: Scientific advisory board & speakers bureau
- Macopharma: Scientific advisory board
- Octapharma: Scientific advisory board
- Terumo: Speakers bureau
- □ Haemonetics: Speakers bureau
- Cook Biomedical: Scientific advisory board
- □ Verax Biomedical: Scientific advisory board

#### Terrible car accident

- A 19 year old female was involved in a terrible car accident
- Transported to an ICU at an adult hospital
- Splenic laceration, broken femur and pelvis, unconscious
- Hemodynamically unstable, hypoxic, tacchycardic
  - Estimated to have lost about 2000 ml of blood

## Pre-transfusion testing not complete!

- Pre-transfusion sample drawn but not sent to blood bank
- ABO and RhD type unknown
- Crystaloid fluids administered
- She deteriorated further and required an urgent RBC transfusion...



## What would you do?

- 1. Withhold the transfusion until pre-transfusion testing complete?
- 2. Immediately use recombinant activated factor VIIa (rfVIIa, NovoSeven) and other hemostatic agents while waiting for crossmatched RBCs?
- 3. Use O+ RBCs from uncrossmatched RBCs in ICU refrigerator?
- 4. Call blood bank and request STAT uncrossmatched O- RBCs?
- 5. Be grateful you were not on call that night?

## Really not much of a decision

- She clearly needed RBCs
- 2 O+ RBC units were quickly removed from refrigerator on trauma ward
- There are 2 potential issues here:
  - 1. Antibody mediated hemolysis from uncrossmatched RBCs
  - 2. Possible anti-D alloimmunization leading to potential for hemolytic disease of fetus and newborn following D+ RBC transfusion
- How to proceed?

## 1. What is the risk of hemolysis after uncrossmatched?

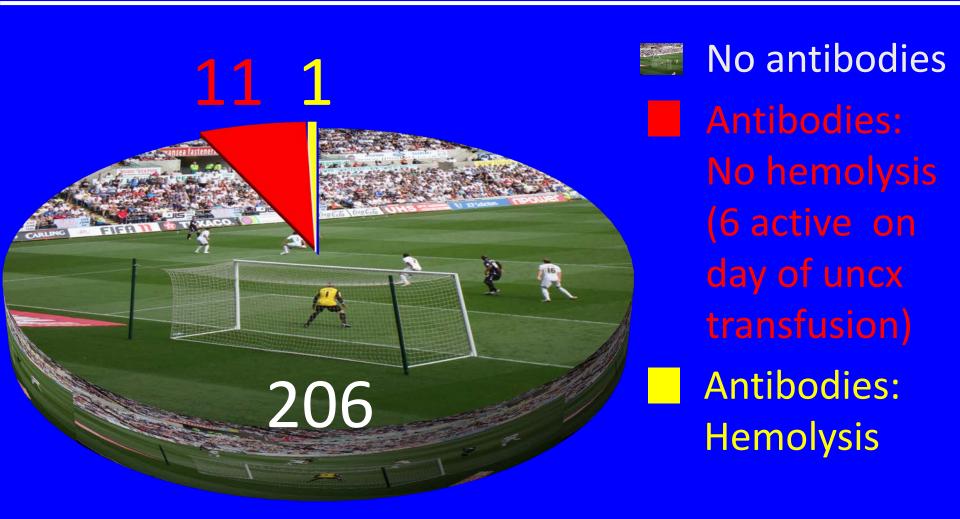
- 1. Unknown?
- 2. High risk because she could have been pregnant and thus become alloimmunized?
- 3. Medium risk because she is likely to have bled some of her plasma volume before receiving uncrossmatched RBC transfusion?
- 4. Low risk because uncrossmatched RBCs are from "universal donor" blood group
- Low risk as demonstrated in a variety of studies

#### Low alloimmunization rate

- Uncrossmatched RBCs are generally group O
- The risk of unexpected antibodies is directly proportional to the probability that the recipient was exposed to RBCs

|               |                    | Males            | Females          |
|---------------|--------------------|------------------|------------------|
|               |                    | % clin sign      | % clin sign      |
| Age (years)   | Number of patients | (95% CI)         | (95% CI)         |
| Indeterminant | 76                 | 0.00             | 0.00             |
| < 30          | 4974               | 0.83 (0.38–1.57) | 0.62 (0.40–0.92) |
| 30-39         | 3308               | 1.09 (3.40–2.35) | 1.56 (1.13–2.10  |
| 40-49         | 1526               | 1.47 (0.67–2.77) | 2.74 (1.77–4.01) |
| 50-59         | 1491               | 1.41 (0.73–2.44) | 3.14 (1.93–4.80) |
| ≥ 60          | 4591               | 2.34 (1.78–3.02) | 4.59 (3.74–5.56) |
| Totals        | 15966              | 1.66 (1.34–2.03) | 2.03 (1.77–2.32) |

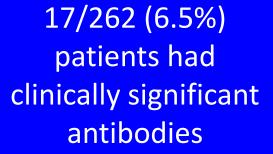
## The Pitt experience with uncrossmatched RBCs


- 218 recipients of at least 1 uncrossmatched RBC
  - 1065 uncrossmatched units in total
  - 65% male
- Mean age: 54 ± 21
- Mean number of uncrossmatched RBC units:

$$4.9 \pm 4.9$$

- Range 1-24
- Units issued to...
  - ED 48%
  - OR 24%
  - ICU 23%
  - Medicine, radiology, L&D 5%




## What is the risk of using uncrossmatched RBCs?



Risk of hemolysis: 1/218 (0.5%)

## More experience with uncrossmatched RBCs

262 recipients of uncrossmatched RBCs



12/218 (5.5%)

7/17 were transfused with incompatible RBC units

Risk of hemolysis: 1/262 (0.4%)

1/218 (0.5%)

Only 1/7 hemolyzed!

# The literature's experience with uncrossmatched RBCs

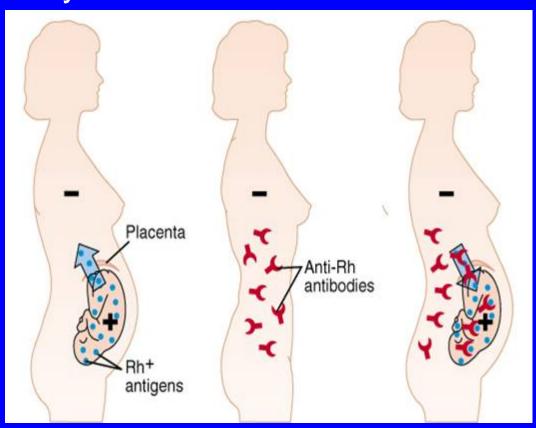
| Study                        | Number of Recipients | Number of<br>Uncrossmatched<br>Erythrocyte Units<br>Issued | Rate of<br>Hemolysis | Rate of New<br>Antibody Formation |
|------------------------------|----------------------|------------------------------------------------------------|----------------------|-----------------------------------|
| Mulay, 2012 <sup>17</sup>    | 1,407                | 4,144                                                      | 1/1,407 (0.02%)      | 7/232* (3%)                       |
| Radkay, 20126                | 218                  | 1,065                                                      | 1/218 (0.5%)         | 4/218 (1.8%)                      |
| Miraflor, 201115             | 132                  | 1,570                                                      | 1/132 (0.8%)         | 1/132                             |
| Goodell, 2010 <sup>18</sup>  | 262                  | 1,002                                                      | 1/262 (0.4%)         | Not reported                      |
| Ball, 2009 <sup>19</sup>     | 153                  | 511                                                        | 0                    | Not reported                      |
| Dutton, 2005 <sup>14</sup>   | 161                  | 581                                                        | 0                    | 1/161 (0.6%)                      |
| Unkle, 1991 <sup>20</sup>    | 135                  | Not reported                                               | 0                    | 3/135 (2.2%)                      |
| Lefebre, 1987 <sup>21</sup>  | 133                  | 537                                                        | 0                    | Not reported                      |
| Schwab, 1986 <sup>22</sup>   | 99                   | 410                                                        | 0                    | Not reported                      |
| Gervin, 1984 <sup>23</sup>   | 160                  | 875                                                        | 0                    | Not reported                      |
| Blumberg, 1978 <sup>24</sup> | 46                   | 221                                                        | 0                    | Not reported                      |
| Total                        | 2,906                | 10,916                                                     | 4/2,906 (0.1%)       | 16/878 (1.8%)                     |

## Low alloimmunization rate

|             |          | ED % clin<br>sign |              | Trauma %<br>clin sign |                | Haem/onc<br>% clin sign |
|-------------|----------|-------------------|--------------|-----------------------|----------------|-------------------------|
| Age (years) | ED total | (95% CI)          | Trauma total | (95% CI)              | Haem/onc total | (95% CI)                |
| Indeterm.   | 70       | 0.0               | 29           | 0.0                   | 0              | 0.0                     |
| < 30        | 1860     | 0.5 0.22-0.92)    | 772          | 0.5 (0.14–1.32)       | 124            | 0.0                     |
| 30-39       | 1019     | 1.8 1.05-2.78)    | 333          | 0.8 (0.49-3.40)       | 136            | 4.4 (1.64-9.36)         |
| 40-49       | 664      | 2.6 1.50-4.07)    | 223          | 1.3 (0.27–3.88)       | 157            | 7.0 (3.55–12.19)        |
| 50-59       | 588      | 2.6 1.43-4.17)    | 194          | 1.0 (0.13-3.67)       | 166            | 3.6 (1.34–7.70)         |
| ≥ 60        | 1797     | 3.9 3.05-4.90)    | 554          | 3.8 (2.36–5.74)       | 607            | 6.3 (4.47–8.49)         |
| Totals      | 5998     | 2.2 ().80–2.55)   | 2105         | 1.7 (1.16-2.30)       | 1190           | 5.1 (3.94–6.54)         |

#### Remember this...

- Do not hesitate to use uncrossmatched RBCs in an unstable patient without ABO group
- Overall probability that they have an antibody is low
- Even if they do, probability of hemolysis is tiny
- Uncrossmatched RBCs are not a substitute for crossmatched RBCs in otherwise stable patients


#### 2. Potential for D alloimmunization

- She's A !!!
- Received 2 O+ RBCs
- She also received 12 more O neg RBCs
- Also plasma and platelets
- She is now more stable and so we can think



## The problem with anti-D

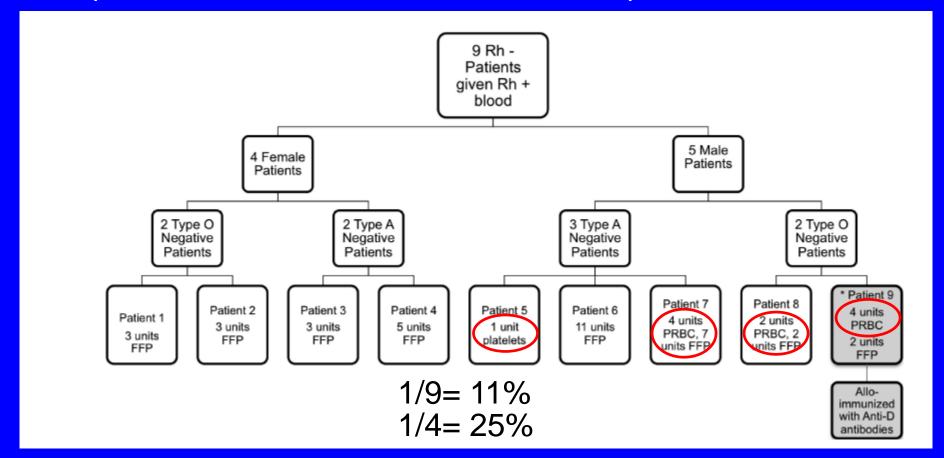
- The patient is a 19 year old woman
- "...Of childbearing age"
- If she becomes anti-D alloimmunized then her fetus could be affected by HDFN



## < 25% of hospitalized D- patients make anti-D

- 445 D+ units transfused to 98 D- recipients
- 82% of D+ RBCs issued to ER, OR, ICU or medicine ward

| Recipient characteristics                      | Anti-D formers $(n = 22)$ | Non–anti-D<br>formers (n = 76) |
|------------------------------------------------|---------------------------|--------------------------------|
| Number of units of D+ RBCs transfused          |                           |                                |
| Mean                                           | 3.3                       | 4.9                            |
| Median                                         | 2.5                       | 3                              |
| Range                                          | 1-10                      | 1-24                           |
| Number of recipients who received any LR D+ RI | BCs                       |                                |
| Mean                                           | 3                         | 10                             |
| Median                                         | 4                         | 4                              |
| Number of units                                | 4                         | 3.5                            |
| Range                                          | 2-6                       | <u>1-</u> 10                   |
| Number of recipients reexposed to D+ RBCs      | 1                         | (8)                            |


## What about D alloimmunization in all patients?

- American study of 268 patients who received uncrossmatched RBCs
- Eight D- patients survived ≥7 days and had an antibody screen thereafter

| Age<br>(years) | Sex    | ABO<br>type | Admission service | Number of<br>ED-released<br>O- RBC units<br>transfused<br>in ED | Number of O+<br>RBC units<br>transfused<br>outside ED | Antibody screen on admission | Length of<br>serologic<br>follow-up<br>(days) | Antibody screen result on follow-up | Length of stay (days) | Mortality (during study period)/died from injuries suffered on admission |
|----------------|--------|-------------|-------------------|-----------------------------------------------------------------|-------------------------------------------------------|------------------------------|-----------------------------------------------|-------------------------------------|-----------------------|--------------------------------------------------------------------------|
| 38             | Male   | 0           | Trauma            | 2                                                               | 20                                                    | Negative                     | 164                                           | Positive (WAA, anti-D, C, E)        | > 202                 | Alive/NA                                                                 |
| 47             | Male   | В           | Trauma            | 2                                                               | 27                                                    | Negative                     | 26                                            | Negative                            | 29                    | Died/yes                                                                 |
| 90             | Female | В           | Gastrointestinal  | 2                                                               | 6                                                     | Negative                     | 10                                            | Positive (anti-E)                   | 14                    | Alive/NA                                                                 |
| 31             | Male   | 0           | Trauma            | 4                                                               | 1                                                     | Negative                     | 2003                                          | Negative                            | 24                    | Alive/NA                                                                 |
| 54             | Female | A           | Trauma            | 2                                                               | 25                                                    | Negative                     | 142                                           | Negative                            | 146                   | Died/no                                                                  |
| 74             | Male   | 0           | Vascular surgery  | 2                                                               | 3                                                     | Negative                     | 65                                            | Negative                            | 14                    | Alive/NA                                                                 |
| 50             | Male   | A           | Gastrointestinal  | 1                                                               | 2 <                                                   | Positive (anti-D)            | 280                                           | Positive (anti-D)                   | 36                    | Alive/NA                                                                 |
| 63             | Male   | 0           | Vascular surgery  | 1                                                               | 14                                                    | Negative                     | 16                                            | Negative                            | 40                    | Alive/NA                                                                 |

#### What about D alloimmunization in trauma?

- Another American study of trauma patients
- 132 patients received an uncrossmatched RBC transfusion
- Nine patients were D- and received D+ "blood products"



#### What about D alloimmunization in trauma?

- Yet another American study of trauma patients
- 161 patients received an uncrossmatched RBC transfusion
- Ten patients were D- and received D+ RBCs
  - "1" / 10 (10%) developed anti-D
- But was it really just one?

One male of type
A- who received 6 units of Rh+ UORBC
had an initial (sero)conversion, but no
antibody to the Rh factor on subsequent
crossmatching 5 months later

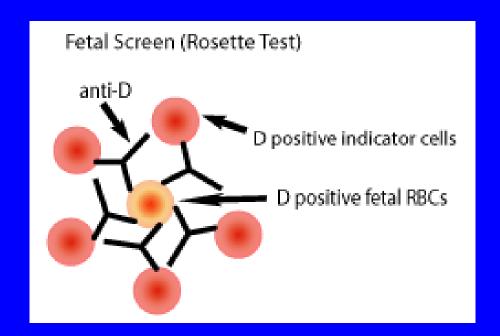
Actual rate was really 20%

#### What about D alloimmunization to PLTs?

- ADAPT study
- Largest retrospective study to date
- 485 D- "all comers" who had not received D+ RBCs
- Received at least 1 dose of D+ PLTs, had screen ≥28 days later

| Platelet product type         | D+ (n) | D-(n) | Total (n) |
|-------------------------------|--------|-------|-----------|
| Whole blood-derived platelets | 1180   | 1505  | 2685      |
| Apheresis platelets           | 1970   | 694   | 2664      |
| Total number                  | 3150   | 2199  | 5349      |

55% hematology/oncology patients




#### What should we do about the 2 D+ RBCs?

- Nothing, it was only 2/14 RBCs and they have surely bled out by now
- 2. Nothing, her risk of making anti-D is quite low
- 3. Administer Rhlg
- 4. Do a Kleihauer-Betke test for D+ RBCs
- 5. Do a fetal bleed screen (rosette test) to detect D+ RBCs
- 6. Perform urgent RBC exchange as soon as possible to avoid alloimmunization

#### What we did next...

- We did a rosette test to detect D+ RBCs
- Commonly performed on post-partum D- women to detect the presence of > 30 ml of D+ RBCs
- K-B test is not useful in this setting as it detects hemoglobin F, not specifically D+ RBCs



#### Results

- The fetal bleed screen was positive
- Indicates that > 30 ml of RBCs still present in recipient
- Unfortunately it does not tell us how many D+ RBCs are still present!
- What to tell the family?



## What do we say to the family?

- The administration of the D+ RBCs was necessary to save her life
- 2. She still has some D+ RBCs in circulation
- 3. Her risk of making anti-D is 25%
- 4. Her risk of having a fetus affected by severe HDFN is 25%
- 5. The overall risk of a bad fetal outcome is thus ~ 5%
- 6. Not recommended to use Rhlg if patient received >1 D+ RBC unit
- 7. All the above

## We talked to the family

- We explained the low risk of a bad fetal outcome
- Father felt that she intended to have children
- Wanted us to "do everything"
- Femoral line inserted
- She weighed 102 kg
- For a fraction of remaining (FCR) of 10% we calculated that we needed to exchange 18 RBC units
- How should we prepare these RBCs?

## **How to select RBCs for exchange**

- 1. ABO, D compatible
- 2. ABO, D, K matched
- 3. ABO, D, C, c, E, e, K matched
- 4. Matched for ABO and all minor antigens

## **Selecting RBCs for exchange**

- We tried to antigen match the RBCs
- Her RBC phenotype was negative for:
   D C E K Fy<sup>a</sup> Jk<sup>a</sup> s
- Thus we would have had to screen many many units to find 18 antigen matched
- We decided to match only for Rh and K

| Antigen system | Antigen         | Total antibodies* |
|----------------|-----------------|-------------------|
| Kell           | K               | 131 (22.7)        |
|                | Kpª             | 3 (0.5)           |
|                | Js <sup>a</sup> | 2 (0.4)           |
| Rh             | D               | 53 (9.2)          |
|                | C               | 28 (4.9)          |
|                | C               | 27 (4.7)          |
|                | E               | 111 (19.2)        |
|                | e               | 2 (0.4)           |
|                | Cw              | 8 (1.4)           |
|                | V               | 3 (0.5)           |

## Rhlg is required

- We calculated that there would be 10% of the recipient's own RBCs left after the exchange
- If each RBC unit contained 230 ml of RBCs, then potential for 46 ml of residual D+ RBCs
- Each 1500 IU vial of Rhlg covers 15 ml of packed RBCs
- We thus administered 6 vials of Rhlg



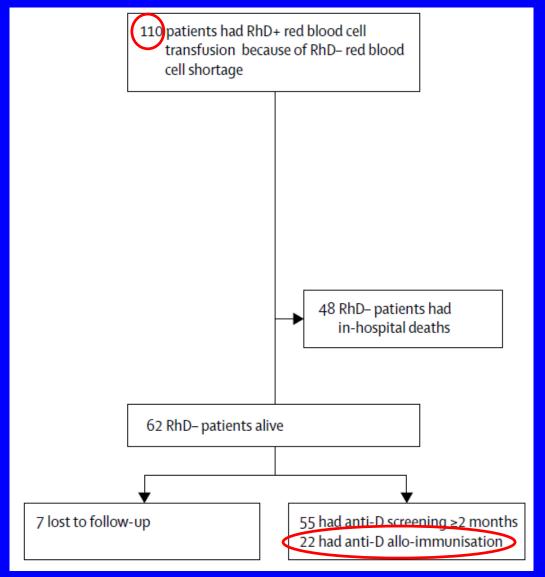
## Rhlg is required

- Antibody screen performed 6 hours later was negative
- So 6 more vials were administered
- Antibody screen became positive
- Now we'll wait and see if she produces anti-D



## **Summary**

- 1. Don't withhold lifesaving RBCs regardless antibodies, RhD, age...or anything else!
- 2. Risk of making anti-D is 25%
- 3. Risk of having a fetus affected by severe HDFN is 25%
- 4. The overall risk of a bad fetal outcome is thus~ 5%
- 5. Not recommended to use Rhlg if patient received >1 D+ RBC unit
- 6. Talk to the family




## 1. What is the risk of hemolysis after uncrossmatched?

- 1. Unknown?
- 2. High risk because she could have been pregnant and thus become alloimmunized?
- 3. Medium risk because she is likely to have bled some of her plasma volume before receiving uncrossmatched RBC transfusion?
- 4. Low risk because uncrossmatched RBCs are from "universal donor" blood group
- Low risk as demonstrated in a variety of studies

## What about D alloimmunization in all patients?

German study of patients who received D+ RBCs in A&C




Overall rate of D alloimmunization: 22/110=20%

Of those who survived and had an antibody screen: 22/55=40%

#### What about D alloimmunization in trauma?

German study of patients who received D+ RBCs in A&C



Overall rate of D alloimmunization: 14/437=3%

Rate of D alloimmunization amongst Drecipients of D+ RBC in ED: 14/31=45%

#### What % of anti-D alloimmunized pregnancies end in severe HDN?

- > 90%
- ~ 50%
- ~ 25%
- < 10%

## What to do now?

- 1. Do nothing, she bled so much that there's probably only 31 ml of D+ RBCs left
- 2. Calculate the highest possible quantity of D+ RBCs still present and give enough Rhlg to clear them
- 3. Perform RBC exchange using D- RBCs
- 4. Talk to the family as patient is unconscious

## What is the risk of alloimmunization following uncx?

- Higher than that with crossmatched RBCs because pre-transfusion testing is not completed before they are issued
- 2. Exactly the same as with crossmatched RBCs if extended phenotyping not performed
- 3. Lower than with crossmatched RBCs because the patient is bleeding significantly so the transfused RBCs end up on the floor quickly

#### A word about alloimmunization after uncrossmatched RBCs

- Don't forget that crossmatched RBCs are generally only matched for ABO and D
- Thus the potential to form antibodies to other antigens also exists with crossmatched RBCs
- Recipient's inflammatory state aside, the risk of forming new alloantibodies to minor antigens is the same as with crossmatched RBCs

## Why perform a fetal bleed screen?

- If negative then likely very few D+ RBCs still present
- 2. If positive then an RBC exchange must immediately be performed
- 3. If positive then too many D+ RBCs are present for Rhlg to be effective
- 4. If positive the patient has already become alloimmunized to D