

Forward Programming Megakaryocytes from Human Pluripotent Stem Cells in vitro pathway to Transfusion Medicine

Thomas Moreau

Ghevaert lab BBTS, Glasgow 14th September 2017

Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute

NHS Blood and Transplant

Race & Sanger Award... to a team!

Amanda Evans

Cedric Ghevaert

Annett Mueller

Manufactured "artificial" blood

Manufactured "artificial" blood

Scaling up
QUANTITY
QUALITY

Ex-vivo blood functionality

PUBLIC PERCEPTION

University of BRISTOL

NIHR Blood and Transplant Research Unit Prof Julie Kent

Dr Rachel Hale

National Institute for Health Research 2018 Red blood cells from adult blood stem cells Phase-I trial Recovery Survival

NOVOSANG.

Wellcome 2018-20 Red blood cells from immortalised RBC line (Bela) from adult HSC Phase-I trial Recovery Survival

Platelets, origin

Platelets, stem cell options

Platelets, in vitro ways

Improving ex-vivo platelet biogenesis

Platelets, in vitro ways

Moreau et al., Nature Commun 2016

MK Forward Programming, the cells

MK Forward Programming, the platelets

Moreau et al., 2016

Research programme towards FiM

GMP stem cell screening

Inducible MK Programming

Replace lentiviral vectors for chemically inducible programming

HLA-null universal platelets

Prevent HLA class-I surface expression to create universal platelets

Annett Mueller Platelet tran

er Platelet transfusion refractoriness:

- Chronically transfused patients, multiparous women may develop anti-HLA class-I alloantibodies
- The NHSBT provides 6% HLA-I matched platelet units (management issue, extra cost)

Stem cell MK culture scale-up

Optimising stem cell MK ex-vivo culture to scale-up production

MK Programming GMP transition

Translation of the MK programming protocol to GMP procedures

Biology of MK Programming

Understanding the biology of MK programming to improve outcome

Biology of MK Programming

RAINBOW lentiviral vectors

Biology of MK Programming

Conclusions & Take-home

- MK Forward programming technology allows the scalable generation of mature megakaryocytes in vitro from human iPSCs.
- **Bioreactor systems under development (***in house* and collaborations) to increase platelet biogenesis *ex vivo* (Quantity & Quality)
- MKFOP technology **progresses towards clinically compliant material and methods** (GMP lines, virus-free inducible programming, HLA-I deletion)

Acknowledgements

NHSBT Cambridge, Haematology

Cedric GHEVAERT Meera ARUMUGAM Cavan BENNETT Amanda DALBY **Amanda EVANS** Holly FOSTER Nilly HOJATOLESLAMI Daniel HOWARD Moyra LAWRENCE **Thomas MOREAU** Annett MUELLER Momal TAIMOOR Amie WALLER Wing Han WU Rotations **James Baye** Carmen DIAZ **Riina LAMPELA** Jane PATRICK

(...)

Assessing ex-vivo platelets

- Morphology (Sysmex, TEM)
- Function:
- 1. Agonist activation (Flow)
- 2. Aggregation
- 3. Thrombus under flow

- Recovery, survival post transfusion
- Thrombotic dose
- Function:
- 1. Thrombus formation
- 2. Haemorrhages assay
- 3. Immunogenicity
- Improved mouse models (hVWF,...)

Futuristic Platelets

