Screening donors and donations for transfusion transmissible infectious agents

fppt.com

Aim

- Not to teach you microbiology
- To provide and awareness of the 'big picture'
- To provide an understanding of what is done to ensure the microbial safety of products:
 - which infectious agents are screened for
 - which screening targets are used
 - how screening is performed
 - outcomes

Basic safety

The safety of donated products is critical

• There is no such thing as 'absolutely safe'

 The level of safety of the processes which use the donated products must be equally as safe

• Cost must be balanced against benefit

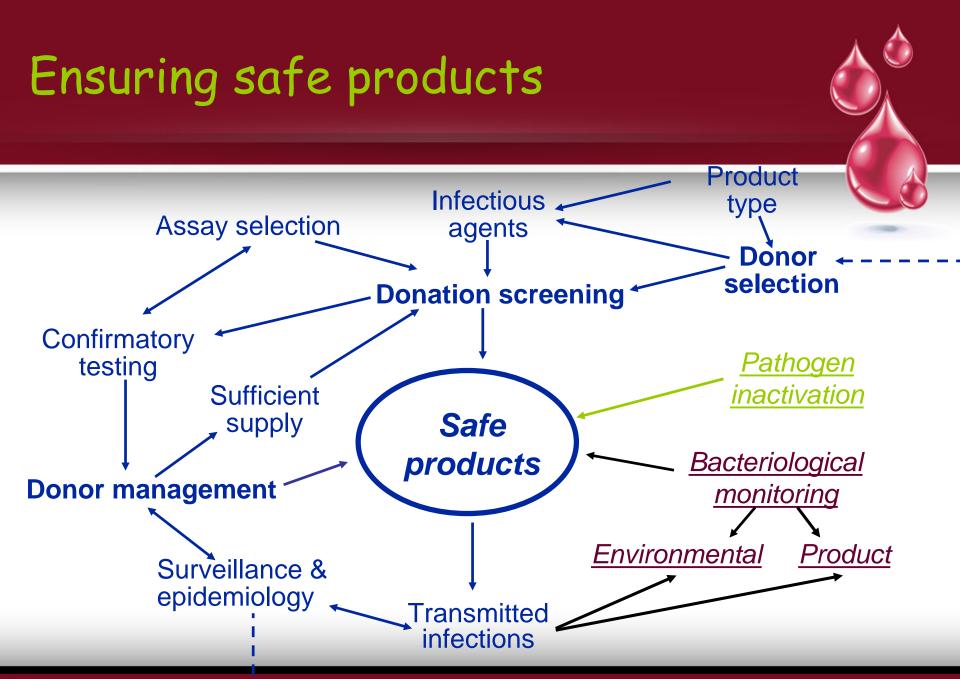
Transmissible infectious agents

- The range of agents potentially transmissible is potentially relatively large
- The agents considered to be the greatest and universal risk is much smaller
- Range of agents transmitted includes:
 - viruses
 - bacteria
 - parasites
 - prions (strong causal evidence)
- Transmissibility depends upon a number of factors

Transmissibility

- Present in the product
 - circulates in blood (sufficient quantity)
 - infectious form
- Asymptomatic infection
 - donor does not have symptoms
 - at least some infectivity whilst asymptomatic
- Parenteral transmission
 - via blood and body fluids

from -196°C to 22 °C


- direct inoculation into the blood stream
- Stable under storage conditions applied

Clinical consequences

• Even if transmissible, is transmission harmful?

• Do all transfusion transmitted infections do harm?

• If not, is there any need to screen for a transmissible agent that does not appear to have any adverse clinical consequences?

fppt.com

Which infectious agents are screened for?

Agents reported to have been T/T

• Viruses

hepatitis viruses A-E HTV 1+2 HTLV I+II CMV EBV HHV-8 Parvovirus B19 **GBV-C** TTV West Nile Virus Dengue Zika

Bacteria

Treponema pallidum (Syphilis) Brucella melitensis (Brucellosis) Yersinia enterocolitica/Salmonella spp. Rickettsia rickettsii (Rocky Mountain Spotted Fever) Coxiella burnettii (Q fever)

• Protozoa

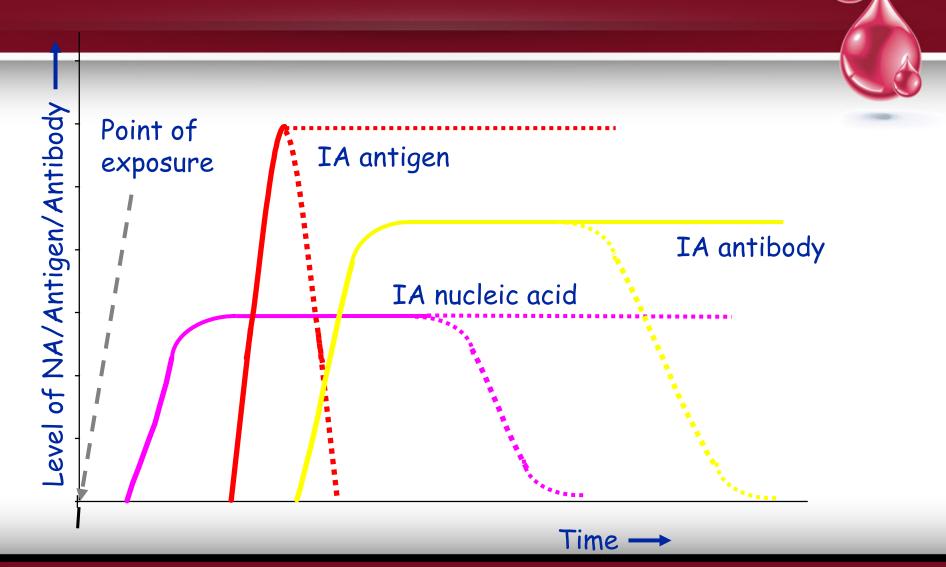
plasmodium spp. (Malaria) Trypanosoma cruzi (Chagas' disease) Toxoplasma gondii (Toxoplasmosis) Babesia microti/divergens (Babesiosis) leishmania spp. (Leishmaniasis)

Infectious agents screened for (UK)

- The infectious agents screened for are defined within the UK Transfusion Guidelines (Red Book)
 - mandatory (all donations)
 - additional (selected donations)
- Mandatory
 - HBV, HIV, HCV, Syphilis, HEV
 - HTLV
- Additional agents/markers
 - HCMV Ab & DNA, HBcAb, Malarial Ab, T. cruzi Ab (Chagas disease), WNV RNA

Why do we not screen for all?

- Not present in donor population
 - prevalence of infection in the general population
 - prevalent/incident infection in donors
- Some present at high level in population
 - significant proportion of the population already exposed
- Not a risk to all recipients
 - selective screening possible
 - do not give rise to clinical consequences
 - transmission but no or limited disease
- Effective screening not always possible
 - serological markers of little use
 - molecular often not practical/appropriate


Which screening targets are used?

Specific screening targets

- For each infectious agent, which target is used?
 - The course of an infection exposure to the agent - infection incubation - multiplication of the agent appearance of first circulating marker appearance of subsequent circulating markers resolution of infection

Agent/host/test interaction

Mandatory screening targets

Mandato	ry screening:					
	Blood	Tissues/Stem cells				
HBV	HBsAg	HBsAg, HBcAb, HBV DNA*				
HIV	Ag/Ab(1+2+0)	Ag/Ab(1+2+0), HIV RNA*				
HCV	Ab, RNA	Ab, RNA*				
Syphilis	specific Ab	specific Ab				
HTLV	Ab (I+II)	Ab (I+II)				
HEV	HEV RNA	HEV RNA				

Molecular screening of blood donations performed on pools of 24 or 6 samples; tissue and stem cell screening is ID only * if serology only a f/u sample must be taken at 6/12

Additional screening targets

- HCMV Ab / HCMV DNA for at risk recipients
- Malarial Ab, T. cruzi Ab, WNV RNA potentially exposed donors

• (HBcAb - piercers, history of jaundice)

How is screening performed?

Screening - donor selection

- First part of the screening process
 - decision point for release of donor
- Is the donor suitable?
 - will donation harm the donor?
 - will donation harm the recipient?
- Requires comprehensive and appropriate donor selection guidelines

Screening - laboratory

- In-vitro screening of donor/donation samples
 - decision point for release of donation/products
- Requires:
 - defined infectious agents and screening targets
 - evaluated and suitable assays and platforms
 - appropriate screening algorithm
 - effective and appropriate confirmation of screen reactivity

Evaluated and suitable assays and platforms

- All assays used for screening are evaluated through the UK kit evaluation groups (NHSBT - KEG, SNBTS - MTEG)
- Automated screening platforms with high levels of process control
- Working within an effective QMS
- Combination of molecular and serology

Appropriate screening algorithm

 The screening algorithm defines how the screening results are generated and used - fate of the donation

- UK screening algorithm is that of initial screen and repeat of any initial reactives in duplicate using the same assay
 - 2 out of 3 rule applied
- Donation fate based upon overall screen result

Effective confirmation

- Screen repeat reactive donors need to be investigated to determine if the reactivity is specific or non-specific
 - clinical intervention for infected donors (public health)
 - management of donor base
- Donor management is important to maintain donor base
 - non-specific reactivity is assay associated
 - non-specific reactivity is cumulative
 - unnecessary loss of donors should be avoided
 - non-specifically reacting donors can still be used
- Donor fate based upon confirmatory result

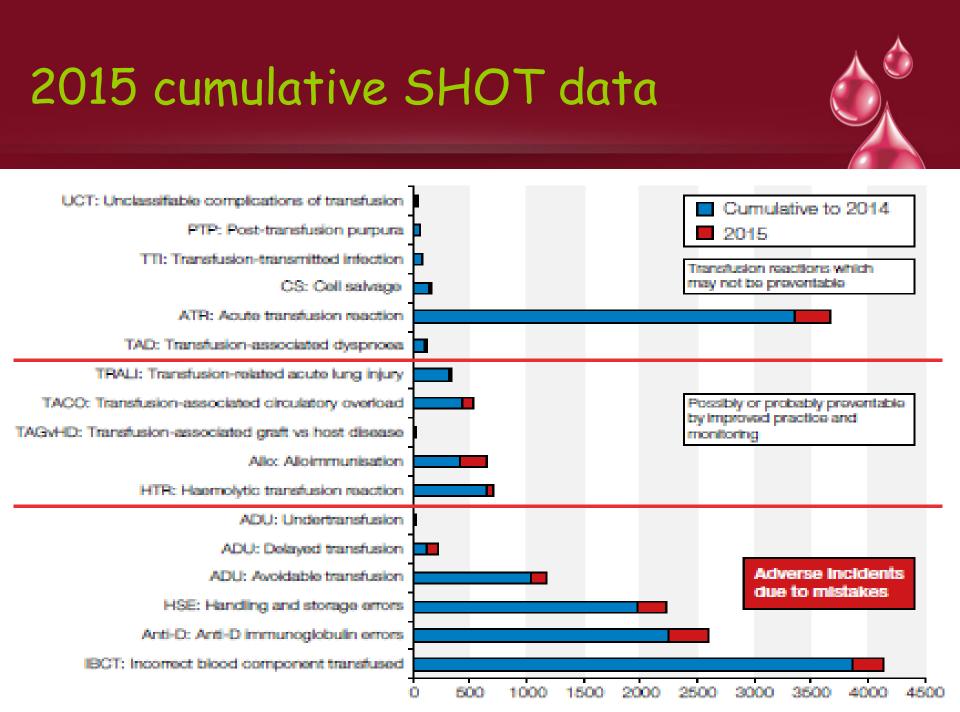
Screening outcomes

Outcomes

- Screen negative donation issued
 - residual risk of a 'false negative' screen result

- Screen repeat reactive blood donation discarded
 - confirmation determines fate of donor
 - re-instatement whenever possible

Residual risk


- Risk of collecting a donation from a donor with a very low level of screening target, not detected on screening
 - does not indicate risk of transmission of infection

<u>Current residual risks</u>

	HBV	HCV	HIV
No. donations tested before a low pos would not be detected (x10 ⁶)	2.1	95.8	15.5
No. of years to a miss	1	46	7

TTI incidents (recipients) by infection

	Pre 1996	1996 to 2001	2002 to 2007	2008	2009	2010	2011	2012	2013	2014	2015	Total
HAV	0	2(2)	1(1)	0	0	0	0	0	0	0	0	3(3)
HBV	1(1)	6(7)	3(3)	0	0	0	1(2)	1(1)	0	0	0	12(14)
HCV	0	2(2)	0	0	0	0	0	0	0	0	0	2(2)
HEV	0	0	1(1)	0	0	0	1(2)	1(1)	0	2(2)	2(3)	4(6)
HIV	0	1(3)	1(1)	0	0	0	0	0	0	0	0	2(4)
HTLV	2	0	0	0	0	0	0	0	0	0	0	0
B19	0	0	0	0	0	0	0	1(1)	0	0	0	1(1)
Malaria	0	1(1)	1(1)	0	0	0	0	0	0	0	0	2(2)
vCJD	0	3(4)	0	0	0	0	0	0	0	0	0	3(4)
Bacteria	0	23(23)	11(11)	4(6)	2(3)	0	0	0	0	0	1 (1)	40(43)
Total	3	38	18	4	2	0	2	3	0	2	3	75

